Construction of decision trees applying genetic algorithm of structural and parametric synthesis

Shaura А.S., Tenenev V.А.


Construction of decision trees is considered as the problem of optimal structural and parametric synthesis. A genetic algorithm is proposed to solve this problem, implementing a consequent trees growing according to the learning dataset. The approach is used for structure encoding based on saving all structural variations in population in the order as they appear. Developed crossing and mutation operators allow avoiding known problems of structural optimization.


decision trees; genetic algorithm; structural and parametric optimization; genetic encoding

References References

Тененев В. А., Якимович Б. А. Генетические алгоритмы в моделировании систем. - Ижевск : Изд-во ИжГТУ, 2010. - 308 с.

Wo-Chiang Lee. Genetic Programming Decision Tree for Bankruptcy Prediction // Atlantis Press, Proceedings of the 2006 Joint Conference on Information Sciences JCIS 2006. - Pp. 4-7. - URL: < (дата> обращения: 24.05.2012).

Classification and regression trees / L. Breiman, J. H. Friedman, R. A. Olshen et al. - California : Wadsworth & Brooks, 1984. - 368 p.

Koza, J. R. Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive Systems). - MIT Press, 1992. - 819 р.

Stanley, K. O., Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies // Evolutionary Computation. - 2002. - Vol. 10, Nr 2. - Pp. 99-127.

Quinlan, J. R. Induction of Decision Trees // Machine Learning. - Vol. 1, Iss. 1. - Pp. 81-106. - URL: (дата < (дата> обращения: 24.05.2012).

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2012 Александр Сергеевич Шаура, Валентин Алексеевич Тененёв

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1813-7911