Neural Network Model for Forecasting Human Capital
Abstract
Keywords
Кетова К. В. Математические модели экономической динамики: монография. Ижевск : Изд-во ИжГТУ, 2013. 284 с.
Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks, 2015, vol. 61, pp. 85-117. doi: 10.1016/j.neunet.2014.09.003
Nguyen G., Dlugolinsky S., Bobk M. Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review. 2019. Vol. 52. Pp. 77–124. doi: 10.1007/s10462-018-09679-z
Тененёв В. А., Тененёва А. В. Обучение нечетких нейронных сетей генетическим алгоритмом // Интеллектуальные системы в производстве. 2010. № 1 (15). С. 76–85.
Vavilova D.D., Ketova K.V., Kasatkina E.V. Application of Genetic Algorithm for Adjusting the Structure of Multilayered Neural Network for Prediction of Investment Processes // Материалы VIII Международной конференции «Технические университеты: интеграция с европейскими и мировыми системами образования». 2019. Т. 1. С. 223–233.
Ghanbarzadeh M., Aminghafari M. A novel wavelet artificial neural networks method to predict nonstationary time series. Communications in statistics-theory and methods. 2018. Vol. 49. No. 4. Pp. 864–878. doi: 10.1080/03610926.2018.1549259
McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943. Vol. 5. Pp. 115–133.
Hebb D. O. The Organization of Behavior: A Neuropsychological Theory. Wiley, 1949. 335 p.
Rosenblatt F. Principles of Neurodynamics: perceptrons and the theory of brain mechanisms. Washing-ton, D.C. Spartan books, 1962. 480 p.
Kohonen T. Self-Organizing Maps(Third Ext. Edition). New York, 2001. 501 p.
Grossberg S. Competitive learning: From interactive activation to adaptive resonance. Cognitive Science. 1987. Vol. 11. No. 1. Pp. 23–63.
Werbos P.J. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Harvard University, Cambridge, 1974.
Minsky M.L., Papert S. Perceptrons: an introduction to computational geometry. Cambridge, Mass., 1969. 112 p.
Hopfield J.J., Tank D. W. Neural computation of decisions in optimization problems. Biological Cybernetics. 1985. Vol. 52. No. 3. Pp. 141–152.
Haykin S. Neural Networks: A Comprehensive Foundation. United States, 1998. 842 p.
Hecht-Nielsen R. Confabulation Theory. Springer-Verlag Berlin Heidelberg, 2007. 116 р.
Митинская А. Н., Матыч М. А. Исследование проблемы прогнозирования с использованием нейронных сетей // Актуальные направления научных исследований XXI века: теория и практика. 2015. Т. 3. № 7-2 (18-2). С. 30–31. DOI: 10.12737/ 15021.
Cavarretta F., Naldi G. Mathematical study of a nonlinear neuron model with active dendrites. Aims Mathematics. 2019. Vol. 4. No. 3. Pp. 831–846. doi: 10.3934/math.2019.3.831
Тененев В. А., Паклин Н. Б. Гибридный генетический алгоритм с дополнительным обучением лидера // Интеллектуальные системы в производстве. 2003. № 2. С. 181.
Математическое моделирование человеческого капитала / К. В. Кетова, И. Г. Русяк и др. // Компьютерные исследования и моделирование. 2019. Т. 11. № 2. С. 329–342. doi: 10.20537/2076-7633-2019-11-2-329-342
Русяк И. Г., Кетова К. В. Идентификация и прогнозирование обобщающих показателей развития региональной экономической системы // Прикладная эконометрика. 2009. № 3 (15). С. 56–71.
Айвазян С. А., Афанасьев М. Ю., Кудров А. В. Индикаторы основных направлений социально-экономического развития // Прикладная эконометрика. 2019. № 2 (54). С. 51–62. doi: 10.24411/1993-7601-2019-10003
Рутковская Д., Пилиньский М. Нейронные сети. Генетические алгоритмы и нечеткие системы. М. : Горячая линия – Телеком, 2006. 452 c.
Исполнение бюджетов «Консолидированные бюджеты субъектов РФ и бюджетов территориальных государственных внебюджетных фондов». URL: http://www.roskazna.ru/ispolnenie-byudzhetov/konsolidirovannye-byudzhety-subektov/ (дата обращения: 10.12.2019).
Доходы, расходы и потребление домашних хозяйств. URL: https://www.gks.ru/compendium/document/13271 (дата обращения: 10.12.2019).
Регионы России. Основные характеристики субъектов РФ. URL: https://www.gks.ru/folder/210/document/13205 (дата обращения: 11.12.2019).
Итоги федеральных статистических наблюдений по социально-демографическим проблемам. URL: https://www.gks.ru/free_doc/new_site/inspection/ itog_inspect1.htm (дата обращения: 12.12.2019).
Кетова К. В., Касаткина Е. В., Насридинова Д. Д. Программа структурной оптимизации прогнозных нейросетевых моделей. Свидетельство о регистрации программы для ЭВМ 2014618038. Заяв-ка № 2014615568 от 10.06.2014.
Рейтинг социально-экономического положения регионов РФ – 2019. URL: riarating.ru/infografika/20190604/630126280.html (дата обращения: 20.01.2020).
DOI: http://dx.doi.org/10.22213/2410-9304-2020-1-26-35
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Вавилова Д.Д., Кетова К.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN 1813-7911