Математика 137

УДК 519.712:510.25

Н. И. Калядин, кандидат технических наук, профессор, Ижевский государственный технический университет имени М. Т. Калашникова

МИНИМИЗАЦИЯ ПРЕДСТАВЛЕНИЯ ПРЕДИКАТНЫХ ФОРМ В КОНЕЧНЫХ МОДЕЛЯХ

Предложены методы минимизации предикатных форм в конечных моделях для классического базиса (отрицание, конъюнкция, дизъюнкция).

Ключевые слова: минимизация, ранг, предикатная форма, импликанта, минимальное покрытие.

роблема простейшего представления предикатных форм для сигнатуры σ сводится к выбору базиса и наиболее экономичного представления предикатов в этом базисе. Для функций алгебры логики в настоящее время существенные результаты в решении задачи минимизации получены [1] лишь для базиса {&,∨,¬}. Для предикатных форм относительно сигнатуры σ будем также придерживаться этого базиса, тем более что проблема разрешения для конечных моделей с сигнатурами, состоящими из одноместных предикатов, разрешима [2, 3].

Постановка задачи

В работе [4] рассматривались конечные модели $\mathfrak{M} \rightleftharpoons \langle M; \sigma \rangle$ с полными относительно системы предикатов $\Sigma(M)$ сигнатурами, где $\Sigma(M)$ – произвольное семейство предикатов на M.

Определение 1 [4]. Сигнатуру $\sigma \rightleftharpoons \langle \mathcal{P}_1,...,\mathcal{P}_n \rangle$ модели $\mathfrak{M} \rightleftharpoons \langle M;\sigma \rangle$ назовем полной относительно системы предикатов $\Sigma(M)$, если любой предикат этой системы можно получить из предикатов сигнатуры σ с помощью логических связок $\{\&,\lor,\neg\}$.

Пусть $M \rightleftharpoons \{a_1, a_2, ..., a_m\}$ — конечное множество с m элементами. Систему всех k-местных предикатов на M обозначаем через $\sum_{k}^{m}(M)$. Далее через \mathfrak{M}^m обозначим модель $\langle M; \sigma^{\mathcal{P}} \rangle$, где предикаты сигнатуры $\sigma^{\mathcal{P}} \rightleftharpoons \langle \mathcal{P}_1, ..., \mathcal{P}_m \rangle$ будем интерпретировать следующим образом:

$$\mathcal{P}_i\left(x\right) = \begin{cases} u, \text{ если } x = a_i; \left(i = \overline{1, m}\right), \\ n \text{ в противном случае.} \end{cases}$$

Через \mathfrak{N}^m обозначим модель $\langle M; \sigma^R \rangle$, где предикаты сигнатуры σ^R интерпретируются так:

$$R_{i}\left(x\right) = \begin{cases} u, \text{ если } x = a_{i} \& r^{m}\left(i, j - 1\right) = 1, \ j = \overline{1, m}, \\ n \text{ в противном случае,} \end{cases}$$

здесь $r^m(i,j)$ — дискретные функции Радемахера, определенные в m точках [4].

$$n = \begin{cases} k, \text{ если } m = 2^k, \\ [\log_2 m] + 1 \text{ в противном случае.} \end{cases}$$

Справедливы следующие теоремы.

Теорема 1 [4]. Сигнатура модели \mathfrak{M}^m полна относительно любой системы предикатов $\sum_{k=0}^{m} M(M)$.

Теорема 2 [4]. Сигнатура модели \mathfrak{N}^m полна относительно любой системы предикатов $\sum_{k=0}^{m} m M$.

Пусть $\mathfrak{M} \rightleftharpoons \langle M; \sigma \rangle$ — модель с конечным множеством $M \rightleftharpoons \{a_1, a_2, ..., a_m\}$ и сигнатурой $\sigma \rightleftharpoons \langle Q_1, Q_2, ..., Q_l \rangle$ одноместных предикатов $Q_1, ..., Q_l$, полной относительно любой системы предикатов $\sum_{k=0}^{m} M$.

Пример 1. Рассмотрим некоторую предикатную форму от двух переменных:

$$F(x,y) = Q_{1}(x) \& Q_{1}(y) \& Q_{2}(x) \lor \lor Q_{1}(x) \& Q_{1}(y) \& \overline{Q}_{2}(x) \lor \lor Q_{1}(x) \& \overline{Q}_{1}(y) \& Q_{2}(x) \lor Q_{1}(x) \& \overline{Q}_{1}(y) \& \overline{Q}_{2}(x) \lor \lor \overline{Q}_{1}(x) \& Q_{1}(y) \& Q_{2}(x).$$

Преобразуем эту предикатную форму следующим образом: добавим еще один конъюнктивный член $Q_1(x) \& Q_1(y) \& Q_1(x)$.

В результате допустимых [5, с. 152] эквивалентных преобразований получим минимально короткое (по числу термов) представление рассматриваемой предикатной формы:

$$F(x,y) = Q_1(x) & (Q_1(y) \lor \overline{Q}_1(y)) \lor Q_1(y) & Q_2(x) = = Q_1(x) \lor Q_1(y) & Q_2(x).$$

Из приведенного примера 1 видна неэкономичность представления предикатных форм. Следовательно, возникает задача минимизации представления предикатных форм в конечных моделях.

Для формализации постановки задачи минимизации представления предикатных форм относительно сигнатуры σ дадим ряд определений [4].

Определение 2. Конъюнкция предикатов сигнатуры σ

$$F(x_1, x_2, ..., x_n) = \underset{i=1}{\overset{n}{\&}} Q_{ij}^{\alpha_{ji}}(x_i) =$$

$$= Q_{i_1}^{\alpha_{1i}}(x_i) & Q_{i_2}^{\alpha_{2i}}(x_i) & ... & Q_{it_i}^{\alpha_{tji}}(x_i),$$

где

$$\alpha_{ji} \in \{0,1\}, \ Q_{ji} \in \sigma, \ \left(j = \overline{1,t_i}; \ i = \overline{1,n}\right);$$

$$Q_{ii} \neq Q_{ik} \ \text{при } j \neq k,$$

$$Q_{ij}^{\alpha_{ji}}\left(x_{i}\right) = \begin{cases} Q_{ij}\left(x_{i}\right), \text{если } \alpha_{ji} = 0, \\ \overline{Q}_{ij}\left(x_{i}\right), \text{если } \alpha_{ji} = 1, \end{cases}$$

называется элементарной, если в этой конъюнкции каждый предикат сигнатуры σ с одной и той же переменной x_i встречается не более одного раза.

Определение 3. Рангом элементарной конъюнкции предикатов сигнатуры σ вида $F(x_1, x_2, ..., x_n)$ называется число t_i – количество одноместных предикатов $Q_{it_i}(x_i)$, входящих в эту конъюнкцию.

Определение 4. Дизьюнкция элементарных коньюнкций сигнатуры σ вида $F(x_1, x_2, ..., x_n)$ называется дизьюнктивной предикатной нормальной формой сигнатуры σ , то есть ДПНФ (σ) .

Определение 5. Дизьюнктивная предикатная нормальная форма сигнатуры σ для предиката $R(x_1, x_2, ..., x_n)$, состоящая из конъюнкций ранга $n \times l$, где $l = |\sigma|$, называется совершенной дизьюнктивной предикатной нормальной формой сигнатуры σ , то есть СДПНФ (σ) .

Определение 6. Длиной L ДПН Φ (σ) назовем число элементарных конъюнкций сигнатуры σ , образующих эту ДПН Φ (σ).

Определение 7. Дизьюнктивная предикатная нормальная форма сигнатуры σ , имеющая наименьшую длину по сравнению со всеми другими ДПНФ (σ), эквивалентными данному предикату, называется кратчайшей ДПНФ (σ), то есть КДПНФ (σ).

Определение 8. Дизьюнктивная предикатная нормальная форма сигнатуры σ , содержащая наименьшее число вхождений предикатов сигнатуры σ по сравнению со всеми другими ДПНФ (σ), эквивалентными данному предикату, называется минимальной ДПНФ (σ) (МДПНФ (σ)).

Подчеркнем, что рассматриваются лишь предикаты $R(x_1, x_2, ..., x_n)$, которые можно представить в виде предикатной функции сигнатуры σ :

$$f(Q_{11}(x_1),Q_{12}(x_1),...,Q_{1t_1}(x_1),...,Q_{nt_n}(x_n),...,Q_{nt_n}(x_n)) =$$

$$= \bigvee_{i \in \mathfrak{I}} F_i(x_1,x_2,...,x_n).$$

В последнем выражении $F_i\left(x_1,...,x_n\right)$ есть элементарные конъюнкции сигнатуры σ различных рангов, содержащей, возможно, с отрицаниями, предикаты из множества

$$\{Q_{11}(x_1), Q_{12}(x_1), ..., Q_{1t_1}(x_1), ..., Q_{n1}(x_n), ..., Q_{nt_n}(x_n)\}$$

Решение задачи минимизации представления предикатных форм

Построим методологию минимизации представления предикатных форм в конечных моделях в развитии известных методов минимизации функций алгебры логики [1].

Для простоты изложения рассмотрение будем производить на примере минимизации предикатной функции, зависящей от трех аргументов.

Метод неопределенных коэффициентов

Представим функцию $f(Q_1(x),Q_1(y),Q_2(x))$ в общем случае в виде следующей ДПНФ (σ):

$$f(Q_{1}(x),Q_{1}(y),Q_{2}(x)) = K_{1}^{1} \& Q_{1}(x) \vee K_{1}^{0} \& \overline{Q}_{1}(x) \vee K_{2}^{1} \& Q_{1}(x) \vee K_{2}^{0} \& \overline{Q}_{1}(x) \vee K_{2}^{1} \& Q_{1}(x) \vee K_{2}^{0} \& \overline{Q}_{2}(x) \vee K_{3}^{0} \& \overline{Q}_{2}(x) \vee K_{2}^{0} \& \overline{Q}_{2}(x) \vee K_{12}^{0} \& Q_{1}(x) \& Q_{1}(x) \vee K_{12}^{0} \& Q_{1}(x) \& \overline{Q}_{1}(x) \vee K_{12}^{01} \& \overline{Q}_{1}(x) \otimes Q_{1}(x) \vee K_{12}^{01} \& \overline{Q}_{1}(x) \otimes \overline{Q}_{2}(x) \vee K_{13}^{00} \& \overline{Q}_{1}(x) \otimes \overline{Q}_{2}(x) \vee K_{123}^{00} \& \overline{Q}_{1}(x) \otimes \overline{Q}_{1}(x) \otimes \overline{Q}_{2}(x) \vee K_{123}^{000} \& \overline{Q}_{1}(x) \otimes \overline{Q}_{1}(x) \otimes \overline{Q}_{2}(x) \otimes \overline{Q}_{1}(x) \otimes \overline{Q}_{2}(x) \otimes \overline{Q}_{1}(x) \otimes \overline{Q}_{2}(x) \otimes \overline{Q}_{2}(x) \otimes \overline{Q}_{2}(x) \otimes \overline{Q}_{2}(x) \otimes \overline{Q}_{2}(x) \otimes \overline{Q}_{2}(x$$

Математика 139

Коэффициенты K с различными индексами являются неопределенными и подбираются так, чтобы получающаяся после этого ДНПФ (σ) — дизъюнктивная предикатная нормальная форма сигнатуры (σ), была минимальной — МДПНФ (σ).

Из выражения (1) выберем неопределенные коэффициенты в виде системы:

$$\begin{cases} K_{1}^{1} \vee K_{2}^{1} \vee K_{3}^{1} \vee K_{12}^{11} \vee K_{13}^{11} \vee K_{23}^{11} \vee K_{123}^{111} = f(1,1,1); \\ K_{1}^{1} \vee K_{2}^{1} \vee K_{3}^{0} \vee K_{12}^{11} \vee K_{13}^{10} \vee K_{23}^{10} \vee K_{123}^{101} = f(1,1,0); \\ K_{1}^{1} \vee K_{2}^{0} \vee K_{3}^{1} \vee K_{12}^{10} \vee K_{13}^{11} \vee K_{23}^{01} \vee K_{123}^{101} = f(1,0,1); \\ K_{1}^{1} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{10} \vee K_{13}^{10} \vee K_{23}^{01} \vee K_{123}^{101} = f(1,0,0); \\ K_{1}^{1} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{10} \vee K_{13}^{01} \vee K_{23}^{01} \vee K_{123}^{011} = f(0,1,1); \\ K_{1}^{0} \vee K_{2}^{1} \vee K_{3}^{0} \vee K_{12}^{01} \vee K_{13}^{01} \vee K_{23}^{01} \vee K_{123}^{011} = f(0,1,1); \\ K_{1}^{0} \vee K_{2}^{1} \vee K_{3}^{0} \vee K_{12}^{01} \vee K_{13}^{00} \vee K_{23}^{01} \vee K_{223}^{001} = f(0,0,1); \\ K_{1}^{0} \vee K_{2}^{0} \vee K_{3}^{1} \vee K_{12}^{00} \vee K_{13}^{01} \vee K_{23}^{01} \vee K_{223}^{001} = f(0,0,0); \\ K_{1}^{0} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{00} \vee K_{13}^{00} \vee K_{23}^{00} \vee K_{123}^{000} = f(0,0,0); \end{cases}$$

Пример 2. Рассмотрим конкретную предикатную форму вида:

$$f(Q_{1}(x),Q_{1}(y),Q_{2}(x)) =$$

$$= Q_{1}(x) \& Q_{1}(y) \& Q_{2}(x) \lor Q_{1} \& Q_{1}(y) \& \overline{Q}_{2}(x) \lor$$

$$\lor Q_{1}(x) \& \overline{Q}_{1}(y) \& Q_{2}(x) \lor Q_{1}(x) \& \overline{Q}_{1}(y) \& \overline{Q}_{2}(x) \lor$$

$$\lor \overline{Q}_{1}(x) \& \overline{Q}_{1}(y) \& \overline{Q}_{2}(x).$$

Подобно системе (2) составим для данного примера систему:

$$\begin{cases} K_{1}^{1} \vee K_{2}^{1} \vee K_{3}^{1} \vee K_{12}^{11} \vee K_{13}^{11} \vee K_{23}^{11} \vee K_{123}^{111} = 1; \\ K_{1}^{1} \vee K_{2}^{1} \vee K_{3}^{0} \vee K_{12}^{112} \vee K_{13}^{10} \vee K_{23}^{10} \vee K_{123}^{101} = 1; \\ K_{1}^{1} \vee K_{2}^{0} \vee K_{3}^{1} \vee K_{12}^{10} \vee K_{13}^{10} \vee K_{23}^{01} \vee K_{123}^{101} = 1; \\ K_{1}^{1} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{10} \vee K_{13}^{10} \vee K_{23}^{00} \vee K_{123}^{100} = 1; \\ K_{1}^{0} \vee K_{2}^{1} \vee K_{3}^{1} \vee K_{12}^{01} \vee K_{13}^{01} \vee K_{23}^{00} \vee K_{123}^{100} = 1; \\ K_{1}^{0} \vee K_{2}^{1} \vee K_{3}^{1} \vee K_{12}^{01} \vee K_{13}^{01} \vee K_{23}^{01} \vee K_{123}^{011} = 0; \\ K_{1}^{0} \vee K_{2}^{1} \vee K_{3}^{0} \vee K_{12}^{01} \vee K_{13}^{00} \vee K_{23}^{01} \vee K_{123}^{010} = 0; \\ K_{1}^{0} \vee K_{2}^{0} \vee K_{3}^{1} \vee K_{12}^{00} \vee K_{13}^{00} \vee K_{23}^{00} \vee K_{123}^{001} = 0; \\ K_{1}^{0} \vee K_{2}^{0} \vee K_{3}^{0} \vee K_{12}^{00} \vee K_{13}^{00} \vee K_{23}^{00} \vee K_{123}^{001} = 1; \end{cases}$$

Заметим, что

$$\begin{split} K_1^0 &= K_2^0 = K_2^1 = K_3^0 = K_3^1 = K_{12}^{00} = K_{12}^{01} = K_{13}^{00} = K_{13}^{01} = \\ &= K_{23}^{01} = K_{23}^{10} = K_{23}^{11} = K_{123}^{001} = K_{123}^{010} = K_{123}^{011} = 0. \end{split}$$

Тогда система (3) примет вид

$$\begin{cases} K_{1}^{1} \vee K_{12}^{11} \vee K_{13}^{11} \vee K_{123}^{111} = 1; \\ K_{1}^{1} \vee K_{12}^{11} \vee K_{13}^{11} \vee K_{123}^{110} = 1; \\ K_{1}^{1} \vee K_{12}^{10} \vee K_{10}^{11} \vee K_{123}^{101} = 1; \\ K_{1}^{1} \vee K_{12}^{10} \vee K_{13}^{10} \vee K_{23}^{100} \vee K_{123}^{100} = 1; \\ K_{23}^{0} \vee K_{123}^{000} = 1. \end{cases}$$

$$(4)$$

В силу свойств дизьюнкции для любого значения $x^* \in M$ имеем $1 \lor Q(x^*) = 1$.

Приравняем нулю в каждом из уравнений системы (4) все коэффициенты кроме тех, которые отве-

чают конъюнкциям, содержащим наименьшее число переменных:

$$K_{12}^{11} = K_{12}^{10} = K_{13}^{11} = K_{13}^{10} = K_{123}^{111} = K_{123}^{110} = K_{123}^{101} = K_{123}^{101} = K_{123}^{100} = K_{123}^{000} = 0.$$

Получаем окончательную систему коэффициентов:

$$\begin{cases} K_1^1 = 1; \\ K_1^1 = 1; \\ K_1^1 = 1; \end{cases} \begin{cases} K_1^1 \vee K_{23}^{00} = 1; \\ K_{23}^{00} = 1. \end{cases}$$
 (5)

Отсюда находим МДПНФ (σ) данной предикатной функции

$$f(Q_1(x),Q_1(y),Q_2(x)) = Q_1(x) \vee \overline{Q}_1(y) \& \overline{Q}_2(x).$$

Метод Квайна – Мак-Класки

Пусть по-прежнему задана модель $\mathfrak{M} \rightleftharpoons \langle M; \sigma \rangle$ с основным множеством $M \rightleftharpoons \{a_1, a_2, ..., a_m\}$ и сигнатурой $\sigma \rightleftharpoons \langle Q_1, Q_2, ..., Q_l \rangle$, содержащей l одноместных предикатов.

Предполагается, что минимизируемый предикат $R(x_1,...,x_n)$ задан в СДПНФ (σ). Для простоты будем называть элементарные конъюнкции сигнатуры σ ранга $n \times l$, входящие в СДПНФ (σ) минимизируемого предиката, минитермами ранга $n \times l$. Метод минимизации состоит из последовательного выполнения следующих этапов.

Нахождение первичных импликант

Все минитермы данного предиката $R(x_1,...,x_n)$ сравниваются между собой попарно. Если минитермы B_i и B_j таковы, что они имеют вид $A \& Q(x_i)$ и $A \& \overline{Q}(x_i)$, то выписывается конъюнкция A, являющаяся минитермом $n \times l$ -1-го ранга. Минитермы $n \times l$ -го ранга, для которых произошло склеивание, отмечаются. Этап заканчивается, когда полученные минитермы K-го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются K-го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются K-го ранга уже не склеиваются между собой.

 Π ример 3. Пусть $n=2,\ l=2,\$ и СДПНФ (σ) имеет вид

$$\begin{split} f\left(Q_{1}\left(x_{1}\right),Q_{1}\left(x_{2}\right),Q_{2}\left(x_{1}\right),Q_{2}\left(x_{2}\right)\right) &=\\ &= \overline{Q}_{1}\left(x_{1}\right) \& \, \overline{Q}_{1}\left(x_{2}\right) \& \, Q_{2}\left(x_{1}\right) \& \, Q_{2}\left(x_{2}\right) \lor \\ \lor \overline{Q}_{1}\left(x_{1}\right) \& \, Q_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, \overline{Q}_{2}\left(x_{2}\right) \lor \\ \lor \overline{Q}_{1}\left(x_{1}\right) \& \, Q_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, Q_{2}\left(x_{2}\right) \lor \\ \lor \overline{Q}_{1}\left(x_{1}\right) \& \, \overline{Q}_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, Q_{2}\left(x_{2}\right) \lor \\ \lor Q_{1}\left(x_{1}\right) \& \, \overline{Q}_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, Q_{2}\left(x_{2}\right) \lor \\ \lor Q_{1}\left(x_{1}\right) \& \, \overline{Q}_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, \overline{Q}_{2}\left(x_{2}\right) \lor \\ \lor Q_{1}\left(x_{1}\right) \& \, Q_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, \overline{Q}_{2}\left(x_{2}\right) \lor \\ \lor Q_{1}\left(x_{1}\right) \& \, Q_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, \overline{Q}_{2}\left(x_{2}\right) \lor \\ \lor Q_{1}\left(x_{1}\right) \& \, Q_{1}\left(x_{2}\right) \& \, \overline{Q}_{2}\left(x_{1}\right) \& \, \overline{Q}_{2}\left(x_{2}\right). \end{split}$$

Минитермы 4-го ранга:

$$\begin{split} & \overline{Q}_{1}(x_{1}) \& \overline{Q}_{1}(x_{2}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2})^{*}, \\ & \overline{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& \overline{Q}_{2}(x_{2})^{*}, \\ & \overline{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& Q_{2}(x_{2})^{*}, \\ & \overline{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2})^{*}, \\ & Q_{1}(x_{1}) \& \overline{Q}_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& Q_{2}(x_{2})^{*}, \\ & Q_{1}(x_{1}) \& \overline{Q}_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& Q_{2}(x_{2})^{*}, \\ & Q_{1}(x_{1}) \& \overline{Q}_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& \overline{Q}_{2}(x_{2})^{*}, \\ & Q_{1}(x_{1}) \& Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& \overline{Q}_{2}(x_{2})^{*}, \end{split}$$

Образуем минитермы 3-го ранга:

$$\begin{split} & \overline{Q}_{1}(x_{1}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & \overline{Q}_{1}(x_{2}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & \overline{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1})^{*}, \\ & Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& \overline{Q}_{2}(x_{2})^{*}, \\ & \overline{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& \overline{Q}_{1}(x_{2}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& \overline{Q}_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1})^{*}. \end{split}$$

Теперь находим минитермы 2-го ранга: $Q_1(x_2) \& \bar{Q}_2(x_1)$.

Дальнейшее склеивание невозможно. Получены простые импликанты:

$$\begin{split} & \bar{Q}_{1}(x_{1}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & \bar{Q}_{1}(x_{2}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & \bar{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& \bar{Q}_{1}(x_{2}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& \bar{Q}_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& \bar{Q}_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{2}) \& \bar{Q}_{2}(x_{1}). \end{split}$$

Расстановка меток

Для данного предиката $R\left(x_{1},x_{2}\right)$ ДПНФ (σ) имеет вид

$$f(Q_1(x_1), Q_1(x_2), Q_2(x_1), Q_2(x_2)) = \bigvee_{i \in \mathcal{I}} F_i(x_1, x_2),$$
 (6)

где $F_i(x_1, x_2)$ – простые импликанты, полученные на первом этапе.

Полученные ДПНФ (σ) определяют сокращенную ДПНФ (σ) для предиката $R(x_1, x_2)$.

Необходимо произвести выбрасывание некоторого количества первичных импликант. На этапе расстановки меток составляется таблица (табл. 1), число строк которой равно числу полученных первичных

импликант минимизируемого предиката $R(x_1,x_2)$. Число столбцов совпадает с числом минитермов СДПНФ (σ). Если в некоторый минитерм ДПНФ (σ) выражения (6) входит какая-либо из первичных импликант, то на пересечении соответствующего столбца и строки ставится метка.

Нахождение существенных импликант

Если в каком-либо из столбцов составленной таблицы имеется только одна метка, то первичная импликанта, стоящая в соответствующей строке, называется существенной импликантой. Существенная импликанта не может быть исключена из правой части выражения (6), поэтому из таблицы меток исключаются строки, соответствующие импликантам, и столбцы минитермов, покрываемых этими существенными импликантами.

В нашем случае существенной импликантой является $Q_1(x_2) \& \overline{Q}_2(x_1)$. Она покрывает минитермы:

$$\begin{split} & \bar{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& \bar{Q}_{2}(x_{1}) \& \bar{Q}_{2}(x_{2}), \\ & \bar{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& \bar{Q}_{2}(x_{1}) \& Q_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& Q_{1}(x_{2}) \& \bar{Q}_{2}(x_{1}) \& \bar{Q}_{2}(x_{2}), \\ & Q_{1}(x_{1}) \& Q_{1}(x_{2}) \& \bar{Q}_{2}(x_{1}) \& Q_{2}(x_{2}). \end{split}$$

При переходе к следующему этапу эти минитермы могут быть вычеркнуты.

Вычеркивание лишних столбцов

Исследуется табл. 1, полученная после третьего этапа. Если в ней есть два столбца, в которых имеются метки в одинаковых строках, то один из них вычеркивается. Это можно сделать в силу того, что покрытие оставшегося столбца будет осуществлять покрытие выбранного минитерма.

После вычеркивания существенной импликанты и минитермов, которые она покрывает, таблица меток принимает вид табл. 2.

Вычеркивание лишних первичных импликант

Если после выбрасывания некоторых столбцов на четвертом этапе в таблице появляются строки, в которых нет ни одной метки, то первичные импликанты, соответствующие этим строкам, исключаются из дальнейших рассмотрений, так как они не покрывают оставшиеся в рассмотрении минитермы.

Выбор минимального покрытия максимальными интервалами

Для рассматриваемой предикатной функции выбираем покрытие из импликант $\overline{Q}_1(x_1) \& Q_2(x_1) \& Q_2(x_2)$ и $Q_1(x_1) \& \overline{Q}_1(x_2) \& Q_2(x_2)$, так как они совместно покрывают все оставшиеся после четвертого этапа минитермы. МДПНФ (σ) для данного предиката $R(x_1, x_2)$ имеет вид

$$f(Q_{1}(x_{1}), Q_{1}(x_{2}), Q_{2}(x_{1}), Q_{2}(x_{2})) =$$

$$= \overline{Q}_{1}(x_{1}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2}) \lor Q_{1}(x_{1}) \&$$

$$\& \overline{Q}_{1}(x_{2}) \& Q_{2}(x_{2}) \lor Q_{1}(x_{2}) \& \overline{Q}_{2}(x_{1}).$$

Математика 141

Таблица 1. Этап расстановки меток

$Q_1(x_1) \& Q_1(x_2) \& \overline{Q}_2(x_1) \& Q_2(x_2)$					V	V
$\frac{\mathcal{Q}_1(x_1) \& \mathcal{Q}_1(x_2) \& \overline{\mathcal{Q}}_2(x_1) \& \overline{\mathcal{Q}}_2(x_2)}{\mathcal{Q}_1(x_1) \& \mathcal{Q}_1(x_2) \& \overline{\mathcal{Q}}_2(x_2)}$						V
$Q_1(x_1)\& \bar{Q}_1(x_2)\& Q_2(x_1)\& Q_2(x_2)$		V		V		
$Q_1(x_1) \& \bar{Q}_1(x_2) \& \bar{Q}_2(x_1) \& Q_2(x_2)$				V	V	
$\overline{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2})$	~		V			V
$\bar{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& \bar{Q}_{2}(x_{1}) \& Q_{2}(x_{2})$			V			V
$\bar{Q}_{1}(x_{1})\&Q_{1}(x_{2})\&\bar{Q}_{2}(x_{1})\&\bar{Q}_{2}(x_{2})$						
$\bar{Q}_{1}(x_{1})\&\bar{Q}_{1}(x_{2})\&Q_{2}(x_{1})\&Q_{2}(x_{2})$	V	V				
	$ar{Q}_{\parallel}(x_{\!\scriptscriptstyle 1}) \& Q_{\scriptscriptstyle 2}(x_{\!\scriptscriptstyle 1}) \& Q_{\scriptscriptstyle 2}(x_{\!\scriptscriptstyle 2})$	$\overline{\mathcal{Q}}_{1}(x_{2})$ & $\mathcal{Q}_{2}(x_{1})$ & $\mathcal{Q}_{2}(x_{2})$	$ar{\mathcal{Q}}_{ }(x_{\!\scriptscriptstyle 1})$ & $\mathcal{Q}_{ }(x_{\!\scriptscriptstyle 2})$ & $\mathcal{Q}_{ }(x_{\!\scriptscriptstyle 2})$	$Q_{\parallel}(x_1)\&ar{Q}_{\parallel}(x_2)\&Q_{2}(x_2)$	$\mathcal{Q}_{_{1}}(x_{_{1}})$ & $ar{\mathcal{Q}}_{_{2}}(x_{_{1}})$ & $\mathcal{Q}_{_{2}}(x_{_{2}})$	$Q_1(x_1) \& ar{Q}_2(x_1)$

Таблица 2. Таблица меток

		2)	2)	
	$\overline{\mathcal{Q}}_{\parallel}(x_{1})\mathcal{R}\overline{\mathcal{Q}}_{\parallel}(x_{2})\mathcal{R}\mathcal{Q}_{2}(x_{1})\mathcal{R}\mathcal{Q}_{2}(x_{2})$	$\overline{Q}_1(x_1) \& Q_1(x_2) \& Q_2(x_1) \& Q_2(x_2)$	$Q_1(x_1) \& \overline{Q}_1(x_2) \& \overline{Q}_2(x_1) \& Q_2(x_2)$	$Q_1(x_1)$ & $\overline{Q}_1(x_2)$ & $Q_2(x_1)$ & $Q_2(x_2)$
) & (3&0	3&0) & (
	$_{2}\left(x_{1}\right)$	$\int_{2} (x_1)$	$\sum_{i} (x_i)^2$	$_{2}\left(x_{_{1}}\right)$
	38() & C	Ž % (Ž%(
	$\begin{pmatrix} x_2 \end{pmatrix}$	(x_2)	(x_2)	$\begin{pmatrix} x_2 \end{pmatrix}$
	\bar{Q}	Õ %	\tilde{Q} \gg	\bar{Q}
	(%)	(x_1)	(x_1)	(%)
	<u>1</u> 0	<u>0</u>	<i>6</i>	0
$\bar{Q}_{1}(x_{1}) \& Q_{2}(x_{1}) \& Q_{2}(x_{2})$	V	V		
$\bar{Q}_1(x_2) \& Q_2(x_1) \& Q_2(x_2)$	V			V
$\bar{Q}_{1}(x_{1}) \& Q_{1}(x_{2}) \& Q_{2}(x_{2})$		V		
$Q_1(x_1) \& \bar{Q}_1(x_2) \& Q_2(x_2)$			V	V
$Q_1(x_1) \& \overline{Q}_2(x_1) \& Q_2(x_2)$			V	

Метод Блека – Порецкого

Недостатком рассмотренного метода Квайна — Мак-Класки является необходимость представления исходного предиката в СДПНФ (σ). Желательно найти возможность построения сокращенной ДПНФ (σ) по произвольной ДПНФ (σ) данного предиката $R(x_1, x_2, ..., x_n)$.

Идея такого построения рассматривалась в работах А. Блека и П. С. Порецкого [1] и вытекает из следующей теоремы.

Теорема 3 [5, с. 158]. Если в ДПНФ (σ) для данного предиката $R(x_1,...,x_n)$ входят все конъюнкции вида $A \& Q(x_i)$ и $B \& \overline{Q}(x_i)$, $Q \in \sigma$, то имеет место равенство для любого набора значений переменных

$$x_1^*, x_2^*, ..., x_n^* \in M$$
, $P = P \lor A \& B$, где $P - \Pi\Pi \Phi$ (σ), эквивалентная предикату $R(x_1, ..., x_n)$.

Пополнение ДПНФ (σ) приводит после элементарных поглощений к сокращению ДПНФ (σ). После построения сокращенной ДПНФ (σ) можно использовать метод Квайна, начиная со второго этапа, то есть с построения табл. 2.

Пример 4. Найти сокращенную ДПНФ (о) для предикатной функции:

$$f(Q_{1}(x),Q_{1}(y),Q_{2}(x)) =$$

$$= Q_{1}(x) \& Q_{1}(y) \lor Q_{1}(x) \& Q_{1}(y) \& \overline{Q}_{2}(x) \lor$$

$$\lor Q_{1}(x) \& \overline{Q}_{1}(y) \& \overline{Q}_{2}(x) \lor$$

$$\lor \overline{Q}_{1}(y) \& \overline{Q}_{2}(x) \lor Q_{1}(x) \& \overline{Q}_{2}(x).$$

Для этой ДПНФ (σ) имеются две пары конъюнкции, удовлетворяющие условиям теоремы,

$$\left(Q_{1}(x)\& \bar{Q}_{1}(y)\& \bar{Q}_{2}(x);Q_{1}(x)\& \bar{Q}_{1}(y)\& \bar{Q}_{2}(x)\right)$$
 и $\left(Q_{1}(x)\& Q_{1}(y); \bar{Q}_{1}(y)\& \bar{Q}_{1}(x)\right)$.

Поэтому

$$f(Q_{1}(x),Q_{1}(y),Q_{2}(x)) =$$

$$= Q_{1}(x) \& Q_{1}(y) \lor Q_{1}(x) \& Q_{1}(y) \& \overline{Q}_{2}(x) \lor$$

$$\lor Q_{1}(x) \& \overline{Q}_{1}(y) \& \overline{Q}_{2}(x) \lor$$

$$\lor \overline{Q}_{1}(y) \& \overline{Q}_{2}(x) \lor Q_{1}(x) \& \overline{Q}_{2}(x) \lor$$

$$\lor Q_{1}(x) \& \overline{Q}_{1}(y) \lor Q_{1}(x) \& \overline{Q}_{2}(x).$$

После элементарных поглощений получаем сокращенную ДПНФ (σ):

$$R(x,y) = Q_1(x) \& Q_1(y) \lor \bar{Q}_1(y) \& \bar{Q}_2(x) \lor Q_1(x) \& \bar{Q}_2(x) \lor Q_1(x) \& \bar{Q}_1(y).$$

Вывод

В отличие от булевых функций для минимизации представления предикатных форм в конечных моделях используются предикатные функции, причем аргументные места этих функций могут заменять одноименные предикаты, только с различными переменными.

Библиографические ссылки

- 1. Поспелов Д. А. Логические методы анализа и синтеза схем. М.: Энергия, 1968. 228 с.
- 2. Эдельман С. Л. Математическая логика. М. : Высш. шк., 1975. 176 с.
- 3. *Ершов Ю. Л.* Проблемы разрешимости и конструктивные модели. M. : Наука, 1980. 460 с.
- 4. Белоусов В. А., Калядин Н. И. Конечные модели и их применение к построению классификатора отношений последовательно-параллельного действия // Дискретные системы обработки информации: межвуз. сб. Ижевск: Изд-во ИМИ, 1983. Вып. 5. С. 83—88.
- 5. Калядин Н. И. Конструктивизация моделей классификации конечных объектов // Известия института математики и информатики УдГУ. Ижевск : Изд-во УдГУ, 2007. Вып. 1(38). С. 3–231.

N. I. Kalyadin, Candidate of Technical Sciences, Professor, Kalashnikov Izhevsk State Technical University

Minimizing the Presentation of Predicate Forms in Finite Models

Methods for minimizing predicate forms in the finite models for the classical basis (negation, conjunction, disjunction) are proposed.

Key words: minimization, rank, predicate form, implicant, minimum coverage.

УДК 519.712:510.25

- **Н. И. Калядин**, кандидат технических наук, профессор, Ижевский государственный технический университет имени М. Т. Калашникова
- Д. Н. Сандалов, аспирант, Ижевский государственный технический университет имени М. Т. Калашникова

ВЫЧИСЛЕНИЕ МУЛЬТИФРАКТАЛЬНОЙ РАЗМЕРНОСТИ СИНТЕЗИРОВАННОГО СПЕКТРА СТРУКТУРНЫХ СВЯЗЕЙ

Предложен алгоритм вычисления мультифрактальной размерности синтезированного спектра структурных связей между логическими операторами в формульном представлении булевых функций.

Ключевые слова: спектр структурных связей, мультифрактальная размерность.

Вычисление мультифрактальных размерностей при построении спектров структурных связей между логическими операторами в формульном представлении булевых функций представляет интерес для исследований [1, 2]. Понятие спектра структурных связей вводится в работе [3, с. 97].

Постановка задачи

При решении задач классификации возникает вопрос о выборе некоторых количественных оценок, характеризующих морфологию спектра и позволяющих сравнивать (идентифицировать) между собой получившиеся спектры. С этой целью в первую очередь необходимо предложить и исследовать алгоритм вычисления мультифрактальной размерности.

Решение

1. На шкале сравнений можно использовать инструментарий, связанный с понятием «спектр мультифрактальных размерностей» [4] (далее по тексту – набор мультифрактальных размерностей).

Для того чтобы находить мультифрактальные размерности для рассматриваемого спектра, необходимо определиться с тем, какими фигурами описывать участки спектра и как находить соотношения величин этих фигур на разных этапах рекурсии [2]: 1) первоначально производится синтез спектров по закону, заданному двумя порождающими спектрами, названными генератором и модулятором, на основе понятия фрактальности [5]; 2) затем синтезированный спектр берется в качестве генератора. На втором шаге явно обнаруживается фрактальность, дальнейшие шаги рекурсии будут ее только подтверждать.

Ввиду дискретности спектра и определенности характера расположения неэффективно вписывать участок в окружность или прямоугольник, поэтому принимаем за величину участка приращение площади, как показано на рис. 1.

На рис. 1 видно, что участки a, δ и e состоят из одинаковых приращений, однако это не означает некорректность данного разбиения, так как участок