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GEOMETRIC, KINEMATIC AND DYNAMIC MODELING OF CARTESIAN ROBOT

The goal of modeling any robot is to achieve the function for which it was designed in perfectly manner. When we model a robot we aim to find
the equations that govern the robot geometric, kinematic and dynamic variables. In this paper, we studied the Cartesian robot (three prismatic

D.O.Fs) to find the geometric and kinematic and dynamic models.

First, we use the geometric model to find workspace. Then, we find linear speeds of robot’s links by using the kinematic model, we also study
singular configurations. Finally, a dynamic model is carried out to calculate the forces and torques that are used to choose the motors for robot

Jjoints.
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ue to the growing importance of automated
D robot manipulators, colleges and institutes

raced to teach and develop Robotic science.
This science studies the design and modeling and control
of mechanical systems. Figure 1 shows the distribution
of the global robotics industry ratios, where we find that
Japan has the largest ratio in the global robotics industry,
followed by Europe and the United States. In the rest of
the world we found that the robots industry does not
have the required attention [1].
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Figure 1. Percentage distribution of the world's robot industry

Despite of the importance of the robots, very few pa-
pers about robotic were published in Syria. This paper
was written to use the theoretical knowledge of Robotic
science to accomplish the Cartesian robot.

This paper includes the geometric modeling of the
Cartesian robot with the characterization of the work-
space. Then, a kinematic model was carried out in which
velocities are calculated for robot’s links, with the dis-
cussion of singular configurations. The paper also con-
tains a dynamic modeling of the robot that provides the
forces and torques that must be delivered by the motors
that move the robot.

Robot characterization and its kinematic scheme
Figure 2 shows drawing of a three-dimensional Car-
tesian robot (designed using Inventor). A robot consists

of links that symbolize by C; (Corp) and joints that
symbolize by L, (Liaison) and i = {0, 1, 2, and 3}. The
first Prismatic joint between the two links C, and C,
allows C; to move up and down, the second one is the
joint between two links C; and C, which allows C, to
move right and left. The last joint between two links C,
and C; allows C; to move forward and backward. The
numerical values of link’s mass are:

M,=10kg, M, =44kg, M;=5kg, M; =30kg.

The numerical values of friction coefficients in ro-
bot’s joints are:

Wy =My =13 =0.25,

where M,
friction coefficient in the i™ joint.

— " link mass; M, — load mass; y, —
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Figure 2. A three dimensional drawing of the Cartesian robot
(by Inventor)
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Kinematic chain of the robot is shown in Figure 3.

Figure 3. Kinematic chain of the robot

Specifications of the previous chain:

e number of links: L = 4,

e number of joints: J = 3.

So we can find the mobility M by Gruebler's equation

[2]:
M =3(L-1)-2J. (1)

M = 3 so we need three motors to move the robot,
one motor at each one of the joints. Therefore vector of
motorized joint coordinates is: q = (1 r, 7 )T.

Figure 4 shows the kinematic scheme of the robot
and the links which it is composed of.
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Figure 4. The kinematic scheme of the robot
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Where C; is the i™ link; L, is the i" joint; F is Terminal
link.

Geometric modeling

The aim of this modeling is giving location of the
terminal link in terms of the joint coordinates of the ro-
bot, and identifying workspace.

Note in Figure 5 that links are connected with each
other by the following joints:

L(1): simple prismatic joint between C, and C,
along Z,.

L(2): simple prismatic joint between C, and C,
along Z,.

L(3): simple prismatic joint between C, and C,
along Z,.

Depending on Denavit and Hartenberg, method,
which will be explained in the following section, we

choose the positioning of the coordinates frames associ-
ated with Robot’s links as shown in Figure 5.
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Figure 5. The coordinates frame associated
with each of the robot’s link

Denavait-Hartenberg method

Denavit and Hartenberg placed a modeling method in
1955 for the robot manipulators (open chain) based on
transformation in homogeneous coordinates. The aim of
this method is to find a way to unify the frames placed
on the robot’s links [3, 4, 5]. According to this method,
we number links from 0 to n and put frames as follows:

e choose axis Z; is along the axis of the joint i;

e choose axis X; is along the common perpendicular
with axes Z; and Z,,,.
Also fix frame R, with terminal link.

We find geometric parameters for the robot shown in
Table 1.

Table 1. Geometric parameters for the robot

i ; o d; 0, 7
1 1 0 0 0 n
2 1 -90° 0 90° 7
3 1 90° 0 0 7
F - 0 dp 0 0

Where we have the following variables:
¢ o, : indicate the type of joint so that

¢ 5, =0 when the joint is revolute;

e o, =1 when the joint is prismatic;

e o, : angle between axes Z, ;, Z; corresponding to
rotation about X ;;

e d,: distance between Z, ;, Z; along X;;;

e 0, : angle between axes X;;, X; corresponding to
rotation about Z;;

e 1, : distance between X;;, X; along Z;.

The transformation matrix "' T, defining the frame
R; in the frame R,_; is as follows [3, 4, 5]:

cos0; —sin0; 0 d;
i1 cosa,;sin®; coso;cosO;, —sino; -7 sina,
T =
sino,; sin®; sina,;cos®; cosa; 7 cosa,

0 0 0 1
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Depending on the previous table and the matrix ™! T,

we define the transformation matrix as follows:

0 0 1 r

01 0 =~

0 O 1 2 3 p)
T =T, T, "T,° Ty = 2
F 123F—00r1—dF (2)

0 0 0 1

Direct and inverse geometric model

The direct geometric model (DGM) represents the re-
lations calculating the operational coordinates, giving the
location of the Terminal link F, in terms of the joint co-
ordinates [3, 4, 5]:

X=F(q),

where the vector of motorized joint coordinates is:
_ T
q—(”l b) ”3) .
And the location of the
T
X=(xp yp zp) .

We can find direct geometric model from equation
(2), which is given by the following equations:

Terminal link is:

Xp =133 3)
YE =1 4)
zp =1 —dp. ®)

And we can find the inverse geometric model from
equationq = F ' (X), which is given by the following

equations:
B=Xp; (6)
n=Yrs (7
n=zp+dp. (8)
Workspace

Is set of points which can be occupied by point F
(Terminal link). In our case the workspace is a cube
shown in Figure 6.
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L

Figure 6. Workspace

Kinematic modeling
Direct kinematic model gives the velocities of Ter-

minal link X = (%, - Z7) in terms of the joint ve-

. T
locities q = (d 7y f3) , by using the Jacobi matrix J(g)
according to the equation [3, 4, 5]:

X=J@a=q=I" (X,
_9K(9)

J. = .
8qj

ij
Direct and inverse kinematic model

By deriving the direct geometric model we find
direct kinematic model:

Xp =755 ©
VE =T (10)
Zp = h. (11)

And we can find inverse kinematic model by deriv-
ing inverse geometric model.
Jacobite matrix and anomalies

We conclude the Jacobi matrix from equations (9)
and (10) and (11) that represent direct kinematic model:

00 1
J=0 1 0l (12)
100

Singular configurations are defined as places in
which inverse kinematic model cannot be determined.

These configurations are the solutions for det(J)=0.

We have: det(J)=-1#0. And therefore there are
no Singular configurations for this robot.

Dynamic Modeling

The inverse dynamic model is the relation that gives
the motors torques (and/or forces) in terms of the joint
positions, velocities and accelerations. The inverse dy-
namic model is represented by equation (13) [3, 4, 5]:

r'=/(9,4,4,F,),

where

I': Vector of motors torques/forces, depending on
whether the joint is revolute or prismatic;

q: Vector of joint positions;

q: Vector of joint velocities;

q : Vector of joint accelerations;

F, : Vector of external forces and moments that the

environment exert on the robot.

The direct dynamic model expresses the joint accel-
erations in terms of joint positions, velocities and motors
torques as in equation (14):

i=/(q.q.T.F,). (14)

Dynamic model is used in the control processing and
choosing the motors. To find direct and inverse dynamic
model there are several methods:

Lagrange method that used in complex chain [3, 4, 5];
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Newton — Euler method that used in serial chain
[3,4,5].

In our case we have robot with serial chain so
Newton_Euler method will be used.

Find the dynamic model by Newton — Euler method

To find the dynamic model, we depend on the recur-
rence way so to find the direct and inverse models we
need two recurrences forward and backward [3, 4, 5].

In the forward recurrence we calculates the veloci-
ties and accelerations of the links starting from the base
of the robot towards the terminal link, and then con-
cludes the total forces and moments for each one of the
links depending on equations (15) and (16).

In the backward recurrence we start from the ter-
minal link towards the base. In each step we find motors
torques by expressing for each link the resultant of ex-
ternal forces and moments.

e Forward Recurrence

Newton — Euler equation express the external force
and torque on the link’s center of mass C;.

Newton — Euler relation to calculate the external
force is [3, 4, 5]:

K =MiVGia (15)

F; : The external forces acting on the link C;;

M; : Mass of Link C;;

VGi : Vector of linear acceleration of the center of
mass of the link C;.

Newton — Euler relation to calculate the external
torque is [3, 4, 5]:

Tg, =g, &; +o; /\(IGi(Oi),

(16)

Tg, : Total torque on the link C; about his center of

mass;
I : Inertia matrix of the link C; of his center of

mass;
o, : Angular velocity of the link C;;
®; : Angular acceleration of the link C;.

Note. Because all the joints in the Cartesian robot are
prismatic joints, all rotational terms are equal to zero.
Therefore we will find only the transitional terms, and
we will calculate only the forces.

The force F; is applied on O; center of frame R; so

equation (15) can be written as follows:

F =MV, (17)

V; : Acceleration of frame R, Center.
Acceleration V; is calculated from the equation (18)
[3,4, 5]

Vi = Vi—l +q;a;, (18)

and a; is a unit vector along axis Z; expressed in

frame R,. Assuming that acceleration of link C; is

0
Vo=10 |,
-&
we have:
0
V,=[0
n-g
0
V, =| & (19)
n-8
7
VF:V3: #
i-g

After finding linear accelerations we can calculate F;
from the equation (17):

Ml('ri_g)
_0 _
F, =| M,7,
| M, (7 -g) ]
_M3if'3 Z
K, =| M7,

M, (i ~g)]

(20)

® Backward recurrence
Figure 7 shows the forces acting on the link C;.

Figure 7. The forces acting on the link C;: f; — the force ap-
plied by the link C;_; on the link C;; f, — the force applied by

the environment on the link C,

By calculating f; and adding the effect of the fric-

tion, the force required from the motors can be calcu-
lated assuming the motor is fixed on the link C;_; and

moves the link C;. The expression of f; (equation 21)
can be concluded from Figure7:
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f, =F +f,, +1,. (21)
We start calculating from terminal link which is fixed

to link Cj toward to link C;, taking into account the

following considerations:
e f; equal to zero;

0
o fon =fp =M, |0 |;
4
M : Load mass;
f, : is the force which is applied to the terminal link
of the robot:

(M3)7
fy =F +f, =| (M;)5
(Ms)(i’i_g)_MLg
(M3)7
fy, =F, +f; =| (M, + M;)# (22)
(M, +M;) (i -g)-M,g

(M, +M,+M;) (i -g)-M,g

Calculating motors torques
After calculating f; and adding the effect of friction,

the force I'; required from the motors can be calculated
using equation (23) [3, 4, 5]:
Iy =fa+F,, (23)

where
F,: The friction in the joint. Equation (24) ex-

presses I'; :

= (M, + M, +M;) (i —g)-M g +F;
=(My+M;)i,—(My+M;+M;)gp,
:(M3)i”3 _(Ms +ML)gl~l3

24

Because all joints acceleration values can be ne-
glected, equation (24) becomes as follows:

r, =fl+Ff1

=—(M+M, +M;+M,)(g)-F;
Iy=fHh+F,
=—(My+M;+M,)(gn,)

I, =f3+Ff3
=—(M5+M,)(guns)

(25)

Movement is transmitted from the motor to the link
through a pinion-rack, so for calculating the required
torque we multiply the force calculated from equation
(27) by radius of the pinion fixed with motor as follows:

T, =TR
T,,=T,R, ;. (26)
T3 =T3R,

T, i" Motor torque;

R, : i" the radius of the dentate fixed with motor.

Note: Due to the difficulty in determining fric-
tion F;, we try to overcome this problem by multiplying

the value of the calculated torque by a safety factor
equals to n=1.5. Finally, find the equations (29) that
express the values of motors torques:

Ty =(My+M,+M;+M;)(g)(R)n

m

Ty =(My+M5+M;)(gu,)(Ry) . Q27
Tz =(M;+M, ) (gus)(Rs)

Results

We used Mathematica 8.0 to draw the function
T,; =F(M;) which express the torque in terms of the
load mass.

Note the torque lines don’t intersect with the frame
center (0,0) because the motor torque doesn’t equal to
zero in the case of no load (4, =0), and that happened

due to the need to overcome link mass.

Tml .M L Tml [1F MLL
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8
6
ML Kgl
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Figure 8
Tm2 W .M L Tm2 [ FMLL
1.5
1.2
1.0
0.5 ML Kgl
10 20 30 40 50

Figure 9
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S N By manually calculating the torques from equation
s (27) for load mass equal to 30 Kg, we find:
T, =93Nm
10—1-‘ T,,=125Nm (28)
T,;=1.1N.m
These results are identical with the values in Figures
0.5
8, 9 and 10.
And the rest of the specifications are shown in Table 2.
ML [Kgl We note from the previous table that torque can be
0 20 30 0 o calculated by knowing the force to be overcome and the
radius of the pinion.
Figure 10
Table 2. Specifications the motors
Power Angular speed Linear speed . Torque .
P-T® ©=(301)/ (TR) V=L/S Time Length T—-FR Radius Force
B S(s) L(m) R (m) F(N)
) (RPM) (ms™") (N.m)
14.3 15 0.02 30 0.6 9.3 0.013 478+ F
1.93 15 0.02 30 0.6 1.25 0.013 96.5
1.7 15 0.02 10 0.2 1.1 0.013 85.7

After calculating the angular speed and torque we
can determine the motor power.
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Lorcoporc Ane Xanyn, acnupant, lamacckuii yauBepcutet, CHpHS
Maxmyo banu Ane Mapoice, KaHANAAT TEXHUYECKUX HAYK, AOIEHT, Jlamacckuit yHuBepcutet, Cupus
Anaa Ane [lun Hacep, xkaHINAAT TEXHUUECKUX HAYK, HOIEHT, BhICIINiI HHCTUTYT NpUKIATHBIX HAYK U TeXHOIOrui, Jlamack, Cupust

FeomeTpnqecxoe, KHHEMAaTH4Y€CKOEe U JUHAMHUYECKO0E€ MOCJITUPOBAHUE JIEKAPTOBAa poﬁoTa

Lenvio modenuposanus 1106020 poboma asisemcs noayueHue e2o GYHKyuu, Hauboee MOYHO Co2NAcyrowelics ¢ e2o HasHayenuem. B npoyecce
Modenuposanus. poboma HeobXo0uUMO Haumu ypasHenus, onpeoeiouue e2o 2eoMempuiecKue, KUHeMamuyeckue u OUHAMUYeckue nepemMeHHble.
B smoii cmamve onucan pobom, pabomarowuii 8 0eKapmosoll cucnmeme KoOOPOUHam (¢ mpemsi CmeneHsmu c60000bl), U NOLY4eHbl 2e0MEMPUECcKasi,
KuHemamuyeckas u ounamuyeckas mooenu. CHa4ana ucnonb3yemcs seomempuieckas mooeisb 0 onpeoeneHis pabove2o npocmpancmea poboma.
3amem ¢ nomowplo KuHeMamuyeckol Mooenu Haxo0amces TUHelHble CKOPOCIU 08UCEHUs 36eHbes POOOMA, a MAKice U3yyeHbl 0COOeHHOCMU e20
KoHgueypayuu. Haxoney, paspabamvieaemcs OuHamuyeckas mMooeis O pacuema Cui u Kpymauux MOMeHmMos8, Heodxooumblx i 6bloopa 08uca-

mejetl, NPUBOOSUYUX 8 OBUICEHUE 36eHbS pOOOMA.

KuroueBbie ciioBa: TEOMETPUUICCKOC MOACIUPOBAHUE, KHHEMATUICCKOC MOACIUPOBAHUE, TMHAMUYICCKOEC MOACIIMPOBAHUE, ICKAPTOB p060T.





