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GEOMETRIC, KINEMATIC AND DYNAMIC MODELING OF CARTESIAN ROBOT 

 
The goal of modeling any robot is to achieve the function for which it was designed in perfectly manner. When we model a robot we aim to find 

the equations that govern the robot geometric, kinematic and dynamic variables. In this paper, we studied the Cartesian robot (three prismatic 
D.O.Fs) to find the geometric and kinematic and dynamic models. 

First, we use the geometric model to find workspace. Then, we find linear speeds of robot’s links by using the kinematic model, we also study 
singular configurations. Finally, a dynamic model is carried out to calculate the forces and torques that are used to choose the motors for robot 
joints. 

 
Key words: geometric modeling, kinematic modeling, dynamic modeling, cartesian robot. 
 
 

ue to the growing importance of automated 
robot manipulators, colleges and institutes 
raced to teach and develop Robotic science. 

This science studies the design and modeling and control 
of mechanical systems. Figure 1 shows the distribution 
of the global robotics industry ratios, where we find that 
Japan has the largest ratio in the global robotics industry, 
followed by Europe and the United States. In the rest of 
the world we found that the robots industry does not 
have the required attention [1]. 

 

 
Figure 1. Percentage distribution of the world's robot industry 

Despite of the importance of the robots, very few pa-
pers about robotic were published in Syria. This paper 
was written to use the theoretical knowledge of Robotic 
science to accomplish the Cartesian robot. 

This paper includes the geometric modeling of the 
Cartesian robot with the characterization of the work-
space. Then, a kinematic model was carried out in which 
velocities are calculated for robot’s links, with the dis-
cussion of singular configurations. The paper also con-
tains a dynamic modeling of the robot that provides the 
forces and torques that must be delivered by the motors 
that move the robot. 

Robot characterization and its kinematic scheme 
Figure 2 shows drawing of a three-dimensional Car-

tesian robot (designed using Inventor). A robot consists 

of links that symbolize by iC  (Corp) and joints that 
symbolize by iL  (Liaison) and i = {0, 1, 2, and 3}. The 
first Prismatic joint between the two links 0C  and 1C  
allows 1C  to move up and down, the second one is the 
joint between two links 1C  and 2C  which allows 2C  to 
move right and left. The last joint between two links 2C  
and 3C  allows 3C  to move forward and backward. The 
numerical values of link’s mass are: 

1 10 kg,M =   2 4.4 kg,M =  3 5 kg,M =  30 kg.LM =  

The numerical values of friction coefficients in ro-
bot’s joints are: 

1 2 3 0.25,μ = μ = μ =  

where iM  – ith link mass; LM  – load mass; iμ  – 
friction coefficient in the ith joint. 
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Figure 2. A three dimensional drawing of the Cartesian robot 

(by Inventor) 
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Kinematic chain of the robot is shown in Figure 3. 
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Figure 3. Kinematic chain of the robot 

Specifications of the previous chain: 
• number of links: L = 4; 
• number of joints: J = 3.  
So we can find the mobility M by Gruebler's equation 

[2]:  
3( 1) 2 .M L J= − −  (1) 

M = 3 so we need three motors to move the robot, 
one motor at each one of the joints. Therefore vector of 
motorized joint coordinates is: ( )1 2 3 .Tr r r=q  

Figure 4 shows the kinematic scheme of the robot 
and the links which it is composed of. 

 

 
Figure 4. The kinematic scheme of the robot 

Where iC  is the ith link; iL  is the ith joint; F  is Terminal 
link. 

Geometric modeling 
The aim of this modeling is giving location of the 

terminal link in terms of the joint coordinates of the ro-
bot, and identifying workspace. 

Note in Figure 5 that links are connected with each 
other by the following joints: 

L(1): simple prismatic joint between 0C  and 1C  
along .1Z  

L(2): simple prismatic joint between 1C  and 2C  
along .2Z  

L(3): simple prismatic joint between 2C  and 3C  
along .3Z  

Depending on Denavit and Hartenberg, method, 
which will be explained in the following section, we 

choose the positioning of the coordinates frames associ-
ated with Robot’s links as shown in Figure 5. 

 

 
Figure 5. The coordinates frame associated  

with each of the robot’s link 

Denavait-Hartenberg method 
Denavit and Hartenberg placed a modeling method in 

1955 for the robot manipulators (open chain) based on 
transformation in homogeneous coordinates. The aim of 
this method is to find a way to unify the frames placed 
on the robot’s links [3, 4, 5]. According to this method, 
we number links from 0 to n and put frames as follows: 

• choose axis iZ  is along the axis of the joint i; 
• choose axis iX  is along the common perpendicular 

with axes iZ  and .i+1Z  
Also fix frame FR  with terminal link. 
We find geometric parameters for the robot shown in 

Table 1. 
 

Table 1. Geometric parameters for the robot 
ir  iθ  id  iα  iσ  i 

1r  0 0 0 1 1 

2r  90°  0 90− °  1 2 

3r  0 0 90°  1 3 
0 0 Fd  0 – F 

 
Where we have the following variables: 
• :iσ  indicate the type of joint so that 
• 0iσ =  when the joint is revolute; 
• 1iσ =  when the joint is prismatic; 
• :iα  angle between axes ,i-1Z  iZ  corresponding to  

rotation about ;i-1X  
• :id  distance between ,i-1Z  iZ  along ;i-1X  
• :iθ  angle between axes ,i-1X  iX  corresponding to 

rotation about ;iZ  
• :ir  distance between ,i-1X  iX  along .iZ  
The transformation matrix i-1

iT  defining the frame 

iR  in the frame 1iR −  is as follows [3, 4, 5]:  

cos sin 0
cos sin cos cos sin sin

.
sin sin sin cos cos cos

0 0 0 1

i i i

i i i i i i i

i i i i i i i

d
r

r

θ − θ⎡ ⎤
⎢ ⎥α θ α θ − α − α⎢ ⎥=
⎢ ⎥α θ α θ α α
⎢ ⎥
⎣ ⎦

i-1
iT  
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Depending on the previous table and the matrix i-1
iT  

we define the transformation matrix as follows: 

3

2

1

0 0 1
0 1 0

.
1 0 0

0 0 0 1
F

r
r

r d

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

0 0 1 2 3
F 1 2 3 FT T T T T  (2) 

Direct and inverse geometric model 
The direct geometric model (DGM) represents the re-

lations calculating the operational coordinates, giving the 
location of the Terminal link F, in terms of the joint co-
ordinates [3, 4, 5]: 

( ) ,F=X q  

where the vector of motorized joint coordinates is: 

( )1 2 3 .Tr r r=q  
And the location of the Terminal link is: 

( ) .T
F F Fx y z=X  

We can find direct geometric model from equation 
(2), which is given by the following equations: 

3;Fx r=  (3) 

2 ;Fy r=  (4) 

1 .F Fz r d= −  (5) 

And we can find the inverse geometric model from 
equation ( )1 ,F −=q X  which is given by the following 
equations: 

3 ;Fr x=  (6) 

2 ;Fr y=  (7) 

1 .F Fr z d= +  (8) 

Workspace 
Is set of points which can be occupied by point F 

(Terminal link). In our case the workspace is a cube 
shown in Figure 6. 

 

 
Figure 6. Workspace 

Kinematic modeling 
Direct kinematic model gives the velocities of Ter-

minal link ( )T
F F Fx y z=X& & & &  in terms of the joint ve-

locities ( )2 3 ,
T

d r r=q && & &  by using the Jacobi matrix ( )qJ  

according to the equation [3, 4, 5]: 

( ) ( ) ,
( )

.i
ij

j

q q
F q

J
q

= ⇒ =
∂

=
∂

-1X J q q J X& && &

 

Direct and inverse kinematic model 
By deriving the direct geometric model we find 

direct kinematic model: 

3;Fx r=& &  (9) 

2 ;Fy r=& &  (10) 

1.Fz r= &&  (11) 

And we can find inverse kinematic model by deriv-
ing inverse geometric model.  

Jacobite matrix and anomalies 
We conclude the Jacobi matrix from equations (9) 

and (10) and (11) that represent direct kinematic model: 

0 0 1
0 1 0 .
1 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

J  (12) 

Singular configurations are defined as places in 
which inverse kinematic model cannot be determined. 
These configurations are the solutions for 

 ( )det 0.=J  

We have: ( )det 1 0.= − ≠J  And therefore there are 
no Singular configurations for this robot. 

Dynamic Modeling 
The inverse dynamic model is the relation that gives 

the motors torques (and/or forces) in terms of the joint 
positions, velocities and accelerations. The inverse dy-
namic model is represented by equation (13) [3, 4, 5]: 

( ), , , ,f= eΓ q q q F& &&  

where 
:Γ  Vector of motors torques/forces, depending on 

whether the joint is revolute or prismatic; 
:q  Vector of joint positions; 
:q&  Vector of joint velocities; 
:q&&  Vector of joint accelerations; 
:eF  Vector of external forces and moments that the 

environment exert on the robot.  
The direct dynamic model expresses the joint accel-

erations in terms of joint positions, velocities and motors 
torques as in equation (14): 

( ), , , .f= eq q q Γ F&& &  (14) 

Dynamic model is used in the control processing and 
choosing the motors. To find direct and inverse dynamic 
model there are several methods: 

Lagrange method that used in complex chain [3, 4, 5]; 
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Newton – Euler method that used in serial chain 
[3, 4, 5].  

In our case we have robot with serial chain so 
Newton_Euler method will be used. 

Find the dynamic model by Newton – Euler method  
To find the dynamic model, we depend on the recur-

rence way so to find the direct and inverse models we 
need two recurrences forward and backward [3, 4, 5]. 

In the forward recurrence we calculates the veloci-
ties and accelerations of the links starting from the base 
of the robot towards the terminal link,  and then con-
cludes the total forces and moments for each one of the 
links depending on equations (15) and (16). 

In the backward recurrence we start from the ter-
minal link towards the base. In each step we find motors 
torques by expressing for each link the resultant of ex-
ternal forces and moments. 

• Forward Recurrence  
Newton – Euler equation express the external force 

and torque on the link’s center of mass .iC  
Newton – Euler relation to calculate the external 

force is [3, 4, 5]: 

,iM=
ii GF V&  (15) 

:iF  The external forces acting on the link ;iC  
:iM  Mass of Link ;iC  
:

iGV&  Vector of linear acceleration of the center of 

mass of the link .iC  
Newton – Euler relation to calculate the external 

torque is [3, 4, 5]: 

( ) ,= + ∧
i i iG G i i G iT I ω ω I ω&  (16) 

:
iGT  Total torque on the link iC  about his center of 

mass; 
:

iGI  Inertia matrix of the link iC  of his center of 
mass; 

:iω  Angular velocity of the link ;iC  
:iω&  Angular acceleration of the link .iC  

Note. Because all the joints in the Cartesian robot are 
prismatic joints, all rotational terms are equal to zero. 
Therefore we will find only the transitional terms, and 
we will calculate only the forces. 

The force iF  is applied on iO  center of frame iR  so 
equation (15) can be written as follows: 

,iM=i iF V&  (17) 

:iV&  Acceleration of frame iR  Center. 
Acceleration iV&  is calculated from the equation (18) 

[3, 4, 5]: 

1 ,−= +i i i iV V q a& & &&  (18) 

and ia  is a unit vector along axis iZ  expressed in 
frame 0.R  Assuming that acceleration of link 0C  is 

0
0 ,

g

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

0V&  

we have: 

1

1

2 2

1

3

3 2

1

0
0

0
.

F

r g

r
r g

r
r
r g

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥=⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥−⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤
⎪ ⎪⎢ ⎥=⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥−⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤
⎪ ⎪⎢ ⎥= =⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥−⎣ ⎦⎩ ⎭

V

V

V V

&

&&

& &&

&&

&&

& & &&

&&

 (19) 

After finding linear accelerations we can calculate iF  
from the equation (17): 

( )

( )

( )

1

1 1

2 2 2

1 1

3 3

3 2 2

1 1

0
0

0
.

M r g

M r
M r g

M r
M r
M r g

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥

=⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥−⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪=⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥−⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪= ⎢ ⎥⎪ ⎪⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

F

F

F

&&

&&

&&

&&

&&

&&

 (20) 

• Backward recurrence 
Figure 7 shows the forces acting on the link .iC  
 

fi-fei

Fi

Oi+1Oi

Oi-1

-fi+1

C i-1

C i
C i+1

 
Figure 7. The forces acting on the link :iC  if  – the force ap-
plied by the link 1iC −  on the link ;iC  eif  – the force applied by 
the environment on the link iC  

By calculating if  and adding the effect of the fric-
tion, the force required from the motors can be calcu-
lated assuming the motor is fixed on the link 1iC −  and 
moves the link .iC  The expression of if  (equation 21) 
can be concluded from Figure7: 
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.= + +i i i+1 eif F f f  (21) 

We start calculating from terminal link which is fixed 
to link 3C  toward to link 1,C  taking into account the 
following considerations: 

• eif  equal to zero; 

• 
0
0 ;LM

g

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎣ ⎦

n+1 Lf f  

:LM  Load mass; 
:Lf  is the force which is applied to the terminal link 

of the robot: 

( )
( )
( )( )
( )
( )
( )( )
( )
( )
( )( )

3 3

3 2

3 1

3 3

2 3 2

2 3 1

3 3

2 3 2

1 2 3 1

L

L

L

M r

M r

M r g M g

M r

M M r

M M r g M g

M r

M M r

M M M r g M g

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥

= + =⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥− −⎪ ⎪⎣ ⎦
⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪= + = +⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥+ − −⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪= + = +⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪+ + − −⎣ ⎦⎩ ⎭

3 3 L

2 2 3

1 1 2

f F f

f F f

f F f

&&

&&

&&

&&

&&

&&

&&

&&

&&

 (22) 

Calculating motors torques 
After calculating if  and adding the effect of friction, 

the force iΓ  required from the motors can be calculated 
using equation (23) [3, 4, 5]: 

,
ii i fFΓ = +if a  (23) 

where 
:

ifF  The friction in the joint. Equation (24) ex-

presses :iΓ  

( )( )

( ) ( )

( ) ( )

1

1

2

3

1

1 2 3 1

2

2 3 2 2 3 2

3

3 3 3 3

.

f

L f

f

L

f

L

F

M M M r g M g F

F

M M r M M M g
F

M r M M g

Γ = +⎧ ⎫
⎪ ⎪

= + + − − +⎪ ⎪
⎪ ⎪Γ = +⎪ ⎪
⎨ ⎬

= + − + + μ⎪ ⎪
⎪ ⎪Γ = +⎪ ⎪
⎪ ⎪= − + μ⎩ ⎭

1 1

2 2

2 3

f a

f a

f a

&&

&&

&&

 (24) 

Because all joints acceleration values can be ne-
glected, equation (24) becomes as follows:  

( )( )

( )( )

( )( )

1

1

2

3

1 1

1 2 3

2 2

2 3 2

3 3

3 3

.

f

L f

f

L

f

L

f F

M M M M g F

f F

M M M g
f F

M M g

Γ = +⎧ ⎫
⎪ ⎪

= − + + + −⎪ ⎪
⎪ ⎪Γ = +⎪ ⎪
⎨ ⎬

= − + + μ⎪ ⎪
⎪ ⎪Γ = +⎪ ⎪
⎪ ⎪= − + μ⎩ ⎭

 (25) 

Movement is transmitted from the motor to the link 
through a pinion-rack, so for calculating the required 
torque we multiply the force calculated from equation 
(27) by radius of the pinion fixed with motor as follows: 

1 1 1

2 2 2

3 3 3

.
m

m

m

T R
T R
T R

= Γ⎧ ⎫
⎪ ⎪= Γ⎨ ⎬
⎪ ⎪= Γ⎩ ⎭

 (26) 

:miT  ith Motor torque; 
:iR  ith the radius of the dentate fixed with motor. 

Note: Due to the difficulty in determining fric-
tion

1
,fF  we try to overcome this problem by multiplying 

the value of the calculated torque by a safety factor 
equals to 1.5.η =  Finally, find the equations (29) that 
express the values of motors torques: 

( )( )( )
( )( )( )
( )( )( )

1 1 2 3 1

2 2 3 2 2

3 3 3 3

.
m L

m L

m L

T M M M M g R

T M M M g R

T M M g R

⎧ ⎫= + + + η
⎪ ⎪

= + + μ⎨ ⎬
⎪ ⎪= + μ⎩ ⎭

 (27) 

Results 
We used Mathematica 8.0 to draw the function 

( )mi LT F M=  which express the torque in terms of the 
load mass.  

Note the torque lines don’t intersect with the frame 
center (0,0) because the motor torque doesn’t equal to 
zero in the case of no load ( 0),LM =  and that happened 
due to the need to overcome link mass. 
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Figure 8 
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Figure 9 
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Figure 10 

By manually calculating the torques from equation 
(27) for load mass equal to 30 Kg, we find: 

1

2

3

9.3 .
1.25 . .
1.1 .

m

m

m

T N m
T N m
T N m

=⎧ ⎫
⎪ ⎪=⎨ ⎬
⎪ ⎪=⎩ ⎭

 (28) 

These results are identical with the values in Figures 
8, 9 and 10. 

And the rest of the specifications are shown in Table 2. 
We note from the previous table that torque can be 

calculated by knowing the force to be overcome and the 
radius of the pinion. 

 
Table 2. Specifications the motors 

Force 
( )F N  

Radius 
( )R m  

Torque 
.

( . )
T F R

N m
=  

Length 
( )L m  

Time 
( )S s  

Linear speed

1

/

( . )

V L S

m s−

=  
Angular speed 

(30. ) / ( . )
( )
V R
RPM

ω = π  

Power 
.

( )
P T

W
= ω  

478
ifF+  0.013 9.3 0.6 30 0.02 15 14.30 

96.5 0.013 1.25 0.6 30 0.02 15 1.93 
85.7 0.013 1.1 0.2 10 0.02 15 1.70 

 
After calculating the angular speed and torque we 

can determine the motor power. 
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Геометрическое, кинематическое и динамическое моделирование декартова робота 

Целью моделирования любого робота является получение его функции, наиболее точно согласующейся с его назначением. В процессе 
моделирования робота необходимо найти уравнения, определяющие его геометрические, кинематические и динамические переменные. 
В этой статье описан робот, работающий в декартовой системе координат (с тремя степенями свободы), и получены геометрическая, 
кинематическая и динамическая модели. Сначала используется геометрическая модель для определения рабочего пространства робота. 
Затем с помощью кинематической модели находятся линейные скорости движения звеньев робота, а также изучены особенности его 
конфигурации. Наконец, разрабатывается динамическая модель для расчета сил и крутящих моментов, необходимых для выбора двига-
телей, приводящих в движение звенья робота. 

Ключевые слова: геометрическое моделирование, кинематическое моделирование, динамическое моделирование, декартов робот. 
 




