ВЫБОР ПАРАМЕТРОВ ТВЕРДОТОПЛИВНОГО ДВИГАТЕЛЯ ПРИ ОПТИМИЗАЦИИ ТРАЕКТОРИИ ПОЛЕТА РАКАТЕ

Интересным классом задач, встречающихся в технических приложениях, являются задачи выбора [1–4]. В [5] решением задачи выбора с использованием экспериментальных результатов устанавливаются значения коэффициентов, входящих в закон регулирования многорежимной твердотопливной регулируемой двигательной установки. В [6] приводится постановка и решение задачи об установлении закона темпообмена в объеме камеры сгорания по результатам сравнения расчетных и экспериментальных зависимостей давления продуктов сгорания от времени в период выхода РДТТ на режим квазициклической работы. Ниже подобный подход применяется для решения задачи о выборе закона изменения тяги РДТТ для неуправляемого реактивного снаряда (НУРС), обеспечивающего ему максимальную дальность полета.

Будем рассматривать задачу о дальности полета НУРС, активный участок полета которого обеспечивается твердотопливным ракетным двигателем (рис. 1). Подобная задача была рассмотрена в [7], где отмечалось, что при выборе двухступенчатого изменения тяговых характеристик НУРС и при наличии временной паузы между тягами (при обеспечении заданного в техническом задании значения суммарного импульса тяги РДТТ) можно увеличить дальность полета НУРС более чем в два раза.

Представляет интерес решение задачи для НУРС при использовании современных методов решения задач математического программирования [8-11].
Уравнения внешней баллистики решаются при начальных условиях

\[v = v_0; \quad \theta = \theta_0; \quad x = 0; \quad y = 0; \quad m = m_0 + m_t \]

и интегрируются до тех пор, пока НУРС не достигнет поверхности Земли (соответствует условию \(t, x > 0; y = 0 \)).

Задачу о выборе значений начального угла возведения \(\theta_0 \), массовых расходов топлива \(G_1, G_2 \), параметра \(\alpha \), характерных времен \(t_1, t_2, t_3 \) будем решать как задачу математического программирования о нахождении минимума целевой функции

\[\Phi = \min \left\{ \frac{10^6}{L} \right\}. \]

Здесь \(L(\theta_0, G_1, G_2, \alpha, t_1, t_2, t_3) = x \) при \(y = 0, \ t > 0 \) соответствует расстоянию от места старта НУРС до точки его падения.

На разыскиваемые переменные помимо условия (1) следует записать дополнительно следующие условия:

\[0 < \theta_0 < \frac{\pi}{2}; \]
\[0 \leq G_1; \]
\[0 \leq G_2; \]
\[0 < \alpha < 1; \]
\[0 < t_1 \leq t_2 \leq t_3. \]

Решение сформулированной задачи математического программирования предполагает многократное решение задачи внешней баллистики с вычислением значения целевой функции \(\Phi \).

Определение оптимальных значений \(\theta_0, G_1, G_2, t_1, t_2, t_3 \) выполнялось с использованием метода Ньютона [14], деформируемого многогранника [15] и с использованием генетического алгоритма [16] (в дальнейшем будем обозначать эти методы, соответственно, МН, МДМ, ГА). Особенности реализации алгоритмов оптимизации остаются теми же, что и в [17].

Решение задач оптимизации НУРС выполнялось при следующих основных исходных данных:

- начальная масса НУРС – 80 кг;
- масса топлива – 40 кг;
- удельный импульс топлива – 2350 м/с (суммарный импульс РДТТ – 94000 Н·с);
- начальная скорость НУРС – 70,0 м/с;
- наружный диаметр корпуса – 0,20 м.

Результаты выполненных расчетов представлены на рис. 2 и в таблице.

На рис. 2 для четырех расчетных случаев представлены траектории полёта НУРС, вычисленные на каждой итерации. Ось ординат на рисунках соответствует высоте полёта снаряда, ось абсцисс – дальности полёта. На рис. 2, а представлены результаты решения задачи математического программирования, полученные при использовании метода Ньютона.
На рисунке 2, а – результата решения задачи методом деформируемого многогранника. На рис. 2, б, в приводятся результаты, полученные генетическим алгоритмом. В первом случае (рис. 2, в) первоначально сформировалось поколение, состоящее из 30 особей, и выполнялся расчет 50 поколений. Во втором случае (рис. 2, в) первоначально сформировались поколение, состоящее из 15 особей, и выполнялся расчет 30 поколений.

В таблице приводятся итоговые значения поисковых параметров, полученные различными методами (МН, МДМ, ГА). В представленной таблице два последних столбца соответствуют применению гибридной схемы. Первые 450 итераций выполнялись по генетическим алгоритмам, а последующие итерации – методом Ньютона (предпоследний столбец таблицы) или методом деформируемого многогранника (последний столбец).

\[y \]
\[x \]

Рис. 2. Зависимости у(х), соответствующие траекториям полёта НУРС:

а – метод Ньютона; б – метод деформируемого многогранника; в – генетический алгоритм 30×50; г – генетический алгоритм 15×30

Итоговые результаты решения задачи выбора проектных параметров НУРС

<table>
<thead>
<tr>
<th>Метод решения</th>
<th>МН</th>
<th>МДМ</th>
<th>ГА</th>
<th>ГА</th>
<th>ГА+МН</th>
<th>ГА+МДМ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число итераций</td>
<td>65</td>
<td>59</td>
<td>30×50</td>
<td>15×30</td>
<td>15×30+61</td>
<td>15×30+72</td>
</tr>
<tr>
<td>Целевая функция</td>
<td>10,349</td>
<td>9,661</td>
<td>6,2670</td>
<td>7,3551</td>
<td>12,353</td>
<td>11,216</td>
</tr>
<tr>
<td>L, м</td>
<td>96632</td>
<td>103510</td>
<td>159570</td>
<td>135960</td>
<td>80954</td>
<td>89154</td>
</tr>
<tr>
<td>(\theta_0), рад</td>
<td>66,59</td>
<td>71,24</td>
<td>66,03</td>
<td>68,86</td>
<td>69,79</td>
<td>67,260</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0,4250</td>
<td>0,4379</td>
<td>0,4000</td>
<td>0,6075</td>
<td>0,4552</td>
<td>0,4000</td>
</tr>
<tr>
<td>(G_1), м/с</td>
<td>16,590</td>
<td>17,223</td>
<td>37,589</td>
<td>28,646</td>
<td>35,620</td>
<td>37,794</td>
</tr>
<tr>
<td>(G_2), м/с</td>
<td>6,039</td>
<td>17,704</td>
<td>5,000</td>
<td>5,915</td>
<td>5,027</td>
<td>7,577</td>
</tr>
<tr>
<td>(t_1), с</td>
<td>1,013</td>
<td>1,006</td>
<td>0,421</td>
<td>0,839</td>
<td>0,505</td>
<td>0,419</td>
</tr>
<tr>
<td>(t_2 - t_1), с</td>
<td>10,980</td>
<td>17,393</td>
<td>24,480</td>
<td>21,330</td>
<td>25,000</td>
<td>17,526</td>
</tr>
<tr>
<td>(t_3 - t_2), с</td>
<td>3,766</td>
<td>1,256</td>
<td>4,746</td>
<td>2,625</td>
<td>4,287</td>
<td>3,132</td>
</tr>
</tbody>
</table>

Анализ результатов выполненного исследования позволяет сделать следующие выводы.

1. При принятой постановке задачи практически исключается нулевое значение целевой функции. Зависимость целевой функции от разыскиваемых параметров существенно нелинейная, и расчеты показывают, что задача имеет большое количество решений (существует несколько локальных минимумов).

2. В принятой постановке сходимость методов Ньютона (рис. 2, а) и деформируемого многогранника
(рис. 2, б) незначительно зависит от выбора начального приближения, при этом число необходимых итераций в пределах 50...100. Однако оба метода (МН и МДМ) не обеспечивают определение глобального минимума целевой функции (условий, при которых дальность полета НУРС будет максимальной).

3. Генетический алгоритм, примененный при решении задачи, может обеспечить нахождение не только глобального, но и локальных минимумов. Это хорошо наблюдается на рис. 2, б. Соответствующие локальным минимумам зависимости у(х) многократно накладываются друг на друга. Однако ГА находит глобальный минимум целевой функции при единичных итерациях, что свидетельствует о том, что соответствующая минимальная траектория полета НУРС является неустойчивой (на фазовой плоскости этот минимум соответствует неустойчивому узлу).

4. Применение гибридных алгоритмов (ГА + МН и ГА + МДМ) подтверждает предположение о том, что глобальный минимум целевой функции в решаемой задаче на траектории полета НУРС соответствует неустойчивому решению. Действительно, после перехода от генетического алгоритма к методу Ньютона или к методу деформируемого многогранника решение «свалывается» к локальным минимумам. При этом итоговая дальность полета уменьшается от полученного минимума ГА решения более чем в 1,5 раза.

5. Реализовать траекторию полета НУРС, обеспечивающую максимальную дальность, представляется возможным, однако это может быть обеспечено применением управляющих элементов (аэродинамических или реактивных), удерживающих НУРС на оптимальной траектории.

Библиографические ссылки

Получено 12.07.2016

УДК 534.2+550.34

М. Н. Петров, Московский физико-технический институт

ИССЛЕДОВАНИЕ СЕЙСМИЧЕСКОГО ОТКЛИКА,
ВЫЗВАННОГО ВЗРЫВОМ ЧЕЛЯБИНСКОГО МЕТЕОРИТА

Введение

Широкая сеть сейсмических станций, осуществляющих наблюдение практически по всей территории суши, фиксирует тысячи больших и малых сейсмических событий в год. В основном это землетрясения различной магнитуды, «следы» от взрывов и других техногенных событий.

15 февраля 2013 г. произошло достаточно редкое сейсмическое событие, вызванное взрывом вошедшего в атмосферу Земли космического объекта. Падение Челябинского метеорита 15 февраля 2013 г. вызвало большой интерес общества. Произошедшее в непосредственной близости к городу это событие сопровождалось различными явлениями, одним из которых было землетрясение магнитудой 4 балла примерно в километре к юго-западу от центра Челябинска. Наземные станции сейсмических наблюдений, находящиеся в достаточной близости от места события, зафиксирали это событие, которое по