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This paper concentrates on deriving the real-time kinematics solution of a manipulator attached to an aerial vehi-

cle, while the vehicle's movement itself is not analyzed. The manipulator kinematics solution using the Denavit - 
Hartenberg model was introduced, too. 

The fundamental scope of this paper is to get a global online solution of the design configurations with a weighted 
objective function subject to some constraints. Adopting the resulted forward kinematics equations of the manipulator, 
the trajectory planning problem turns into an optimization task. Several and well-known computing methods are 
documented in the literature for solving constrained complicated nonlinear functions, where in this study the differen-
tial evolution algorithm is adopted, which is a combination of a mathematical search method and an evolution algo-
rithm. 

It is a constrained metaheuristic and population-based approach. Moreover, it is able to solve the inverse kinemat-
ics problem considering the mobile platform, in addition to avoiding singularities, since it does not demand the inver-
sion of a Jacobian matrix. 

Simulation experiments were carried out for trajectory planning of the sixth degree of freedom aerial manipulator 
and the obtained results for three different target points confirmed the feasibility and effectiveness of the suggested 
method. 

 
Keywords: manipulator, inverse kinematics, metaheuristics methods, evolution algorithms, optimization methods, 
differential evolution algorithm. 

 
 

Introduction 
he inverse kinematics (IK) solver is a pri-
mary problem in robotic manipulation, par-
ticularly when real-time and precision in 

calculations are demanded. Mathematically, the 
numerical solution of kinematics is intricate be-
cause of the high degree of nonlinearity. Further-
more, Linear and dynamic programming techniques 
usually fail or reach local optimum in solving NP-
hard problems with a large number of variables and 
non-linear objective functions. Moreover, tradition-
ally Jacobian-based solutions are identified to scale 
inadequately with the high number of degrees of 
freedom (DOF) in addition to singularities exis-
tence [2]. In contrast, in [3] a comparative study of 
several methods based on the Jacobian matrix was 
presented, clarifying that the modified Levenberg - 
Marquardt method is much better for a quite large 
set of random configurations than others but may 
lose convergence compared to Jacobian transpose 
and pseudocode inverse methods. Recently many 
researchers proposed a new method for solving 
real-time IK without using the Jacobian matrix 
based on the position of end-effector (EE), using 

numerical and analytical mathematical tools but did 
not mention exactly the performance as the time 
consuming to get the solution [4]. In [5] also simi-
lar method for (2n + 1) DOF hyper-redundant ma-
nipulator arm was applied. Authors in [6] combined 
two methods as a real-time IK solver for a human-
like arm manipulator based on closed-form analyti-
cal equations for a given position. While otherspre-
sented an on-line adaptive strategy based on the 
Lyapunov stability theory, in addition to Radial 
Basis Function Network (RBFN) and quadratic 
programming, which requires complex hardware 
resources [7].The simulation was done for the posi-
tion of EE in addition to avoid obstacles and was 
conducted on PA-10 a 7-DOF manipulator. In [8] 
a kinematic and time-optimal trajectory planning 
was considered for redundant robots, two ap-
proaches were presented, joint space decomposition 
and a numerical null-space method for a given 
pose. They were tested on 7-DOF industrial robots 
and demanded high consuming time for resolving 
IK. Nowmetaheuristic optimization algorithms are 
an encouraging alternative approach to traditional 
IK techniques due to their strong performance on 
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challenging and high-DOF problems in many vari-
ous domains, the solution can be solved by mini-
mizing an objective function, allowing the EE to 
follow the desired path avoiding obstacles and dy-
namics singularities. In [9] it was explained and 
proved that differential evolution (DE) algorithm 
has emerged as one of the most powerful and versa-
tile global numerical optimizers for non-differential 
and multimodal problems, they showed challenges 
of the variants of DE which may provide less time 
and more robustness in solving IK. In [10] a quad-
ratic programming with branching idea was pre-
sented with a weighted multi-objective function, 
which gave a short-time response while [11] 
showed a comparative research of four different 
heuristic optimization algorithms GA, PSO, QPSO 
and GSA for a 4-DOF manipulator in order to reach 
the target position. In [12] a comparative study of 
IK solver for a mobile manipulator using DE algo-
rithm was presented. It was concluded that hybrid 
DE with biogeography-based optimization called 
HBBO provides good results but a higher computa-
tional cost for weighted fitness function and pose 
target, in contrast, DE proved to be superior to 
PSO, CS, and TLBO, additionally the PSO algo-
rithm verified that it does not solve the inverse ki-
nematic problems correctly. In [13] a developed 
methodology was applied to a synthesized six-bar 
mechanism, it used DE with geometric centroid of 
precision positions technique (GCCP). In [14] DE 
was used to improve the design of a fuzzy control-
ler for a wall-following hexapod robot. In [15] 
a modified self-adaptive DE was proposed in order 
to improve the static force of humanoid robots, 
showing robust, safe, reliable performance com-
pared with other metaheuristics. While [16] pre-
sented an approximation tool for the inverse model 
of the industrial robot based on an adaptive neural 
model optimized by advance DE. 

The work in this paper is an extension of the 
work in [17–19]. The proposed algorithm isthe DE 

algorithm, which is characterized as accurate and 
fast converging in discovering the solution as men-
tioned in [18]. Initially, we define an objective 
function to minimize the error between the desired 
and the actual end-effector pose. The objective 
function considers the minimal movement between 
the previous and the actual joint configurations. To 
overcome the constrained problems, we use a pen-
alty function to penalize all those manipulator con-
figurations that violate the allowed joint boundary. 
Hence, the proposed approach estimates the feasi-
ble manipulator configuration needed to reach the 
desired end-effector pose.  

Manipulator Kinematics 
In order to determine the relationship between 

the coordinate frames, which are assigned to ro-
bots’ links and joints, homogeneous transforma-
tions are required. Three parameters are employed 
to describe the rotation while another three pa-
rameters are used to define the translation. Ac-
cordingly, the Denavit - Hartenberg (DH) conven-
tion was used to describe kinematically the rigid 
motion by assigning the values of four quantities 
for each link, two describe the link itself, and two 
describe the link's connection to a neighboring 
link. Where , ,Q a d  and α are the joint angle, link 
length, link offset and link twist between joints. 
While iT  is the homogeneous transformation ma-
trix between the frames that is a function of θ 
while the other three parameters are constant. The 
position of all links of an arm-part manipulator 
can be specified with a set of 6 joint variables 
from the shoulder's joints Figure 1. This set of 
variables is often referred to as a 6×1 joint vector 
[17, 18]. 

The data in Table 1 represent link parameters of 
the arm-part based on DH strategy in two formulas: 
standard and modified DH. Whereas the standard 
simulation form of LabVIEW Robotics module was 
used, in order to validate the design. 

 

 
Fig. 1. The manipulator with its joints and links. It has seven links and six revolute joints in the arm-part  

while the hand-part contains 5 fingers. Each joint represents a single DOF 
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Table 1. Link parameters of the manipulator’s arm-part 
Modified Denavit Hartenberg Standard Denavit Hartenberg 

1i−α  1[cm]ia −  [cm]id  iθ  
iθ  

(Initial 
value) 

iα  1[cm]ia −  [cm]id  iθ  
iθ  

(Initial 
value) 

Joint 
offset 

2−π  0l  0 1θ  2π  2−π  6.4 0 1θ  0 0 
2π  1l  0 2θ  2−π  0 30.2 0 2θ  2−π  2−π  

0 2l  0 3θ  2−π  2π  0 0 3θ  2π  2π  
2−π  0 3 4l l+  4θ  0 2π  0 23.5 4θ  0 0 

2π  0 0 5θ  2−π  2−π  5.3 0 5θ  2π  2π  
2−π  5l  0 6θ  0 0 5.6 -2 6θ  0 0 

 
The space of all joint variables is referred to as 

the joint-space 1 2 6[ , , , ] .TΘ = θ θ … θ  Here we have 
been concerned with computing the Cartesian space 
representation from the knowledge of the joint-
space information. Hence, the homogeneous trans-
formations of the links were used 1 .i

iT
−  If the ro-

bot’s joint-position sensors are estimated by servo-
mechanisms, the Cartesian position and orientation 
of the hand-part can be computed by 0

7T [17, 18]. 
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7
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The movement of the arm part is used to control 
the motion of the hand-part located at frame 7 in 
the workspace related to the base frame. Moreover, 
the motion ranges of the joints are shown in Table 2 
which were readjusted to be more fitting for ac-

complishing more tasks compared to the joints of 
the human arm. 

 
Table 2. Motion range of the manipulator’s arm-part 

angle 1θ  2θ  3θ  4θ  5θ  6θ  
Arm-
part range

–90
→

+90 

47 
→ 

+115 

–90 
→ 

+15 

–90 
→ 

+90 

–90
→

+25 

–90
→ 

+90 
 
Proposed Optimization Techniques  
for solving kinematics 
The evolutionary optimization algorithms can 

solve the complicated nonlinear equations com-
pletely and efficiently. The solution of the inverse 
kinematics for the manipulator is a very difficult 
problem to obtain by traditional approaches. Be-
sides, the suggested strategies do not require the 
inversion of any Jacobian matrix, and then it avoids 
singularities configurations. In this paper, to opti-
mize this problem, the differential evolution algo-
rithm was used. In general, this optimization tech-
nique is based on the forward kinematics equations, 
which always produces a solution in cooperation 
with an objective function. Hence, the general as-
pect of the problem can be expressed as minimizing 
( ) ,J Θ  constrained by min max .Θ ≤ Θ ≤ Θ  Further-

more, the objective function could be defined as the 
weighted sum of the errors as follows 

 
( ) ( ) ( )

( ) ( ) ,
error error

G E G E

J P O

P P O O

Θ =σ Θ +ε Θ =

=σ − Θ +ε − Θ
 

(1)
 

where ( )errorP Θ  and ( )errorO Θ  represent the posi-
tion and orientation errors respectively and could be 
computed as a difference in distance between the 
target and current position, in this work we used an 
Euclidean formula as a representation of distance. 
While the parameters σ and ε are the weights of the 
position and the orientation, respectively. Let 

( ),G GG P O=  be a given target end-effector pose 
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while ( ) ( ) ( )( ),E EE P OΘ = Θ Θ  is the current end-
effect or pose in the workspace corresponding to 
configuration [ ]1 2 6, , , TΘ = θ θ … θ  which can be 
calculated using forward kinematics, where P refers 
to the 3D position vector of pose while O refers to 
the vector of Roll-Pitch-Yaw Euler angles of pose 
(in radians), respectively. Which the optimization 
algorithms are exploring directly in the configura-
tion space of the manipulator. Hence, each individ-
ual ,1 ,2 , ,6, , , , ,

T

i i i i j i⎡ ⎤Θ = θ θ … θ … θ⎣ ⎦  represents the 

ith candidate set of joint angles. Henceforward, at 
each iteration, we evaluate each candidate configu-
ration iΘ  by passing it through the forward kine-
matics module and measuring the position and ori-
entation error between where the end-effect or 
would be at configuration iΘ  and the target end-
effect or pose. In order to enforce joint limits, each 
dimension j of element iΘ  should be limited to 
searching in the range of valid joint angles 

min max[ , ].iΘ ∈ Θ Θ  This can be realized by clamping 
each dimension j within these bounds at each itera-
tion immediately after it is updated. 

Differential Evolution Algorithm 
The DE algorithm was introduced by Storn and 

Price [1] and studied in [9, 15, 18]. It is one of the 
most powerful stochastic population-based optimi-
zation algorithms. It was invented to optimize func-
tions in an n-dimensional continuous domain. 
moreover, it occupies several benefits such as sim-
ple implementation, good performance, global op-
timization, robust, low space complexity, converges 
fast, and has a good balance between exploration 
and exploitation. The DE algorithm can be consid-
ered both as an evolution algorithm and as 
a mathematical technique, because it uses the con-
cepts of population and evolution, in addition to 
using a mathematical searching method. 

The initialized to a uniform sampling of the in-
stance space, are continuously enhanced by peri-
odically adding a scaled variant of the difference 
vector to a third individual to generate a new candi-
date solution and then producing the succeeding 
generation. DE consists of four stages: initializa-
tion, mutation, crossover, and selection. The last 
three of these are iterated until a termination condi-
tion such as the maximum number of generations is 
reached. Nevertheless, unlike other evolutionary 
algorithms before-mentioned as evolution strate-
gies, mutation is performed by applying the scaled 
difference between members of the population. 
This has the impact of adjusting the step size to the 

fitness aspect over time. The implementation of this 
method is illustrated in Algorithm 1. 

Algorithm 1. The pseudo-code of the differential  
evolution algorithm 

Initialization: 
( ) ( ) ( ) ( ) ( ){ }1 1 1 1 1

1 2

max

, , , , , ,

1,
i NPPopulation

g g

← Θ Θ … Θ … Θ

←
 

Evolution Process:  
While Termination criteria not met do 

1,for i NP do←  

Mutation Process: ( ) ( )( )g g
i iv mutate← Θ  

Crossover Process: ( ) ( ) ( )( ),g g g
i i iu crossover v← Θ  

Selection Process: 
( )( ) ( )( )g g

i iif f u f then≤ Θ  
( ) ( )1intg g

iinsert u o population +  
else  

( ) ( )1intg g
iinsert o population +Θ  

end if  
end for  

1g g← +  
end while  

The trajectory planning strategy can be trans-
formed into an optimization issue with multiple 
constraints. Firstly, it demands to determine the 
dimension of the population NP, the generation 
number g with maximum max ,g  the dimension real-
valued of the individual is equal to the configura-
tion space of the manipulator, the scale factor F, 
and the crossover factor .rC  Then individuals in the 
population are expressed by: 

( ) ( ) ( ) ( )( ),1 ,2 ,6, , , ; 1, 2, , ,g g g g
i i i i i NPΘ = θ θ … θ = …  

represents the design variable of the i-th individual in 
generation g. DE begins by initializing a population 
of NP to cover as much as possible of the exploration 
space constrained by the minimum and maximum 
bounds min min,1 min,2 min, min,6, , , , ,

T
i⎡ ⎤Θ = θ θ … θ … θ⎣ ⎦  

and max max,1 max,2 max, max,6, , , , , .
T

i⎡ ⎤Θ = θ θ … θ … θ⎣ ⎦  
Hence, the i-th individual may then be initialized 
as: ( ) ( )1

, min, max, min,rand 0,1 ,i j j j j⎡ ⎤θ = θ + θ − θ⎣ ⎦  with 

( )rand 0,1  being a uniformly random value be-
tween 0 and 1. Henceforward, The mutant strategy 
is adopted after initialization to generate a donor 
vector ( ) ( ) ( ) ( )( ),1 ,2 ,6, , ,g g g g

i i i iν = υ υ … υ  by its corre-

sponding target vector ( ) .g
iΘ  
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The following have been proposed in [9, 18]:  
DE/rand/1:  

( ) ( ) ( ) ( )( )1 2 3

g g g g
i r i r rFν = Θ + Θ −Θ  

DE/best/2: 
( ) ( ) ( ) ( )( ) ( ) ( )( )1 2 3 4

g g g g g g
i best i r r i r rF Fν = Θ + Θ −Θ + Θ −Θ  

DE/current-to-best/1: 
( ) ( ) ( ) ( )( ) ( ) ( )( )1 2

g g g g g g
i i i best i i r rF Fν = Θ + Θ −Θ + Θ −Θ  

either or: this strategy merges two methods to gen-
erate the donor vector [26]. 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 2 3

1 2 1 3 1

[0,1],

[0,1]

/ /1:

/ / 2 :

f

f

g g g g
i r i r r

g g g g g g
i r r r r r

p mutation probability

a random number
if a p then

use DE rand

F

else
use DE rand

end if

← ∈

← ∈
<

ν = Θ + Θ −Θ

ν = Θ +Κ Θ −Θ +Θ −Θ

 

Where, iF  is the scaling factor within 0 and 1, indi-
ces 1 2 3, , ,r r r  and 4r  are randomly selected integers 
in the range [ ]1, ,NP  such that 1 2 3 3 .r r r r i≠ ≠ ≠ ≠  

( )g
bestΘ  is the best individual in the current popula-

tion, also fp  and a are the mutation probability and 
random number, respectively. At that point, 
a crossover between ( )g

iν  and ( )g
iΘ  is performed to 

generate a trial vector 
( ) ( ) ( ) ( )( ),1 ,2 ,6, , , .g g g g

i i i iu = μ μ … μ  Two methods were 

used in this paper, a binomial and an exponential 
crossover procedure [8]. The binomial crossover 
provides a trial vector by selecting an element from 
the donor vector whenever a randomly produced 
value formed from a uniform distribution is below 
the crossover rate .rC  Additionally, an element h is 
randomly taken per iteration to always come from 
a donor vector as follows: 

( )
( ) ( )
( )

,
,

,

rand 0,1

.

g
i j rg

i j g
i j

if i h or C

otherwise

⎧υ = ≤⎪μ = ⎨
θ⎪⎩

 

Exponential crossover tries to exploit relation-
ships between adjacent elements. It works by 

choosing a random starting element and selecting 
the next L  consecutive elements in a circular man-
ner from the donor vector. The number of elements 
L is calculated as follows: 

 
Algorithm 2. Exponential crossover 

( )

0

0
rand 0,1 r

L
repeat
L
until C or L D

←

←

> >

 

 
After crossover, the objective function as ex-

plained in Eq. 1 is evaluated for the trial vector 
( ) .g

iu  According to the greedy selection only, as 

shown in algorithm 1. Afterward, the better of ( )g
iu  

and ( )g
iΘ  will be picked to remain into the next 

generation. 
Simulation Results 
In this work, we solve inverse kinematics of the 

redundant manipulator with six joints to follow 
a destination pose. The manipulator’s joints are 

, 1, 2, , 6.j Jθ = …  The DH parameters are presented 
in Table 1. In the inverse kinematics experiments, 
the desired end-effector pose for the arm-part of the 
manipulator was determined as a variable 

( ) ( ) (, , , , , , 20,3,40,G GG P O x y z roll pitch yaw= = = −

)0,10,15 .  Moreover, the parameters of the objec-
tive function were adjusted as follows 1ε = −β =  
=0.7 so there is a balance between position and ori-
entation to be optimized. In case of DE algorithm, 
Table 3 shows DE settings while Table 4 presents 
the results of utilizing DE for some scenarios. 

 
Table 3. Setting of the DE Algorithm 

Mutation Method Random 
Scale Factor 0.9 
Crossover Method Uniform 
Crossover Probability 0.95 

 
As presented in Table 4, the purpose of these 

experiments is to find the iteration and population-
which achieves a minimum error and execution 
time. The total error was obtained using 
thefollowing formula: 

( ) ( ) .
i i

iterations

Total R G R G
i

E P P O O⎡ ⎤= − + −⎣ ⎦∑  

This formula computes the error in position and 
orientation for the end-effector in each iteration. 
The algorithm gives multiple solutions after each 
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iteration because of the redundant nature of our 
manipulator. The total error is computed for all it-
erations when applying the algorithm with custom 
parameters. While the execution time was obtained 
by calculating the time consumption for the algo-
rithm to reach the iterations. It is clear that the 9th 
test is the proper solution with a convergence time 
equal to 184 ms, and a total error equal to 
0.00379635. Taking into consideration that the ad-
aptation of the DE parameters nearby the setting of 
this result may improve the solution to be more fit-
ting but with longer convergence time. As pre-
sented in Table 4, it is obvious that the execution 
time depends on the size of the population and the 

iterations, respectively. Further, the population size 
achieves the diversity feature which let the algo-
rithm explores more solutions in the workspace 
while a high iteration gives a solution much closer 
to the target. 

Here, we have applied the algorithm on multiple 
targets as shown in Table 5. 

These target points were taken from real ex-
periments of the manipulator for the task of reach-
ing and grasping an object. Here we are going to 
validate the response for the total error and execu-
tion time. Figure 2 shows the values of the objec-
tive function for those new targets and the solutions 
for them were presented in Table 6. 

 
Table 4. Inverse Kinematics Results of the Differential Evolution Algorithm 

Test No. Population Iterations ( )J Θ  Total 
error 

Execution
time [ms] 

Reaching target 
( ), , , , ,x y z roll pitch yaw  

1 6 250 4.60464 –8.22166 247 ( )20.0619,3.00659,40.0325,3.74, 4.49369,17.5544− −

2 6 500 1.53162 1.78975 594 ( )19.56,2.64638,39.8767,0.465805,13.2258,13.135−

3 8 600 1.19735e-5 8.26589e-6 861 ( )20,3,40, 8.25797 6,10,15e− − −  

4 8 800 3.60207e-7 6.13326e-7 1125 ( )20,3,40,2.59552 8,10,15e− −  

5 10 500 0.000230295 0.000677389 986 ( )19.99,3.0001,40.0001,4.21087 5,10.0004,15e− −  

6 10 750 1.55363e-7 1.13202e-7 1301 ( )20,3,40,1.13202 7,10,15e− −  

7 10 1000 4.53651e-9 –3.13365e-9 1917 ( )20,3,40, 1.40416 9,10,15e− − −  

8 12 250 0.22408 –0.001729 567 ( )19.809,3.0609,40.1352,0.05281,10.1526,15.087−  

9 12 100 0.00231037 0.00193043 184 ( )20.0001,3.00003,40, 0.0006738,9.99932,14.9998− −

10 12 500 3.42549e-5 0.000107144 1146 ( )20,3,40,3.25415 5,10,15e− −  

11 20 500 0.000828201 0.00156291 1736 ( )19.9994,3.00,40.0002,0.000503176,10.00,14.99−  

12 20 750 1.28825e-6 –4.33271e-6 2628 ( )20,3,40, 3.29831 6,10,15e− − −  

13 30 500 0.00107932 –0.00085163 2614 ( )20.0004,2.999,39.999,0.0005774,9.999,15.000−  

14 30 1000 9.20132e-7 3.09732e-8 5255 ( )20,3,40,3.978432 8,10,15e− −  

 
Table 5. Applying the algorithm on three target points 

Test no. ( ) ( ), , , , , ,G G G
P O x y z roll pitch yaw=  ( )1 2 3 4 5 6, , , , ,θ = θ θ θ θ θ θ  

1 (22.66,18.75,35,107.78,21,65.94) (19.3134, 108.021, –79.9889, 82.0306, –19.5808, 36.2275) 
2 (32.2,8.47,40,90,0.4,50) (0.189, 77.562, –52.425, 70.65, –34.05, 28.523) 
3 (32.2,8.5,40,90,0.4,40) (–0.956, 72.63, –47.256, 64.066, –42.752, 33.713) 

 
Table 6. The algorithm response for multiple target points 

Test no. Population Iterations ( )J Θ  Total 
error 

Execution
time [ms]

Reaching target 
( ), , , , ,x y z roll pitch yaw  

1 0.00231037 0.00193043 184 (22.6612, 18.751, 35.0009, 107.779, 21.002, 65.938)
2 0.00127429 –0.00362273 181 (32.199, 8.46, 39.999, 89.997, 0.3998, 50.0005) 
3 

12 100 
0.00796475 0.0221528 177 (32.2145, 8.4989, 40.007, 90.013, 0.407, 39.982) 

 
Figure 2 presents the values of the objective 

function for the first target, while Figure 3 illus-
trates the position and orientation of the end-
effector for the first target after applying the so-
lutions to validate the IK solver. Also Figure 4 

and Figure 6 present the values of the objective 
function for the 2nd and 3rd targets. Furthermore, 
Figure 5 and Figure 7 show the position and ori-
entation of the end-effector for the 2nd and 3rd 
targets. 
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Fig. 2. Displays the values of the objective function  
for the first target after applying the IK-DE solver 

Fig. 3. Illustrates the position and orientation
of end-effector for the first target after applying the solu-
tions to validate the IK-DE solver 

 

 
Fig. 4. Displays the values of the objective function  
for the second target after applying the IK-DE solver 

Fig. 5. Illustrates the position and orientation
of end-effector for the second target after applying the so-
lutions to validate the IK-DE solver 

 

 
Fig. 6. Displays the values of the objective function  
for the third target after applying the IK-DE solver 

Fig. 7. Illustrates the position and orientation
of end-effector for the third target after applying the solu-
tions to validate the IK-DE solver 
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Conclusion 
In comparison with other researchers work, the 

inverse kinematics of a human-like six joints ma-
nipulator to follow a certain pose was solved. The 
DE algorithm was used and the parameters of the 
objective function to be optimized were adjusted to 
have balance between position and orientation. It 
was obvious that the execution time depends on 
both the population size and the iterations. The 
population size achieves the diversity feature, 
which allows the algorithm to explore more solu-
tions in the workspace while the high iteration 
gives a solution much closer to the target. The IK 
solver was validated. Each new solution is consid-
ered as a global solution within its iteration, and it 
grants the algorithm the ability to explore new 
global solution. Therefore, it is important to alter 
the settings of the DE algorithm to geta solution 
based on the objective function in shorter time. The 
adaptation of the algorithm parameters nearby the 
setting point may improve the solution to be more 
fitting but with longer convergence time. The ob-
tained results for three different target points con-
firmed the feasibility and effectiveness of the sug-
gested method. 
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Исследование кинематики для манипулятора беспилотного летательного аппарата на основе  
дифференциального алгоритма эволюции 

 
И. Н. Ибрахим, аспирант, ИжГТУ имени М. Т. Калашникова, Ижевск, Россия 
М. А. Аль Аккад, кандидат технических наук, доцент, ИжГТУ имени М. Т. Калашникова, Ижевск, Россия 

 
Рассмотрено кинематическое решение в реальном времени для манипулятора, прикрепленного к беспи-

лотному летательному аппарату; движение самого транспортного средства в данном исследовании не ана-
лизируется. Представленное кинематическое решение для манипулятора основано на модели Денавита – 
Хартенберга. 

Основной целью исследования является получение глобального решения в реальном времени для конфигура-
ции проектирования с взвешенной целевой функцией с наложением некоторых ограничений. Применение урав-
нений прямой кинематики манипулятора, полученных в результате исследования, позволяет превратить за-
дачу планирования траектории в задачу оптимизации. 

Хорошо известны несколько типов вычислительных методов для решения ограниченных сложных нели-
нейных функций. При этом предлагается дифференциальный алгоритм эволюции, который является комби-
нацией математического метода поиска и алгоритма эволюции. С его помощью представляется возможным 
решение обратной кинематической задачи с учетом мобильности платформы. Кроме того, данный метод 
предотвращает появление сингулярных точек, поскольку он не требует инверсии матрицы Якоби. 

Результаты экспериментального моделирования для планирования траектории манипулятора с шестью 
степенями свободы подтвердили целесообразность и эффективность предлагаемого метода. 

 
Ключевые слова: манипулятор, обратная кинематика, метаэвристические методы, эволюционный алгоритм, 
методы оптимизации, дифференциальный алгоритм эволюции. 
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