About Lissajous Figures

Lozhkin A.G.


It is shown in short that the Lissajous figures unite the central symmetric conic sections, the line and complex Jordan curves. A chance of finding the method of arbitrary linear transformations of Jordan curves is provided.


Jordan curves; arbitrary linear transformations; automorphism

References References

Ложкин А. Г. Вычислительная планиметрия с вырожденными преобразованиями. - Екатеринбург : ИЭ УрО РАН, 2009. - 158 с.

Ложкин А., Дюкина Н. Структурирование аналитической геометрии на основе симметрий. - Saarbrucken : LAP, 2012. - 176 с.

Gibson C. G. Elementary geometry of differentiable curves: an undergraduate introduction. - Cambridge : University press, 2001. - 216 p.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2014 Bulletin of Kalashnikov ISTU

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

ISSN 1813-7903 (Print)
ISSN 2413-1172 (Online)