About Non-Destructive Control of Residual Stresses in Axisymmetric Parts Made of Steel 03Ni17Co10W10MoTi

Uglov A.L., Hlybov A.A., Bychkov A.L., Kuvshinov M.O.


It is known that residual stresses are important in ensuring the performance of materials. At negative temperatures, they lead to a decrease in the reliability of structures. The nature of the appearance of residual stresses is different. In particular, in the process of manufacturing axisymmetric parts of martensitic-aging steel 03Ni17Co10W10MoTi there are significant residual stresses, which often lead to cracks and destruction of parts, especially in those elements of products where there are stress concentrators. The analysis of the literature data and the results of calculations using the methods of solving the axisymmetric problem of the theory of elasticity for residual stresses in pipes, show that the maximum absolute tensile axial and tangential stresses are concentrated near the outer surface.

In a number of production cases, it is required to obtain the current information about the magnitude of residual stresses arising both in the manufacturing process of these products and during their operation, especially at negative temperatures. On the basis of these calculations, as well as after analyzing the existing failures, a method for monitoring residual stresses using surface acoustic Rayleigh waves was chosen. In the proposed method of residual voltage monitoring, converters with a fixed base between the emitting and receiving sensors were used.

The constant base as a measured parameter allows to use the time of propagation of elastic waves. An algorithm for calculating residual stresses based on the acoustoelasticity equations for surface waves is proposed. IVK “ASTRON” was used as the hardware measuring equipment. On the basis of this device and the proposed algorithm for calculating residual stresses, a method for determining residual stresses in parts of complex axisymmetric shape is developed.

The results of acoustic measurements were confirmed by the data obtained at the Dron-2 x-ray diffraction analysis unit. Thus, the possibility of practical use of the proposed method of control using surface waves was shown. It is also shown that in order to reduce the measurement error, it is necessary to carry out at least 8 measurements at one point.


residual stresses, elastic waves, steel, surface waves

Full Text


PDF (Русский)
References References

Каратушин С. И., Спиридонов Д. В., Плешанова Ю. А. Остаточные напряжения в цилиндрических изделиях // Металловедение и термическая обработка металлов. 2013. № 6. С. 53–56.

Смирнов А. Н., Муравьев В. В., Абабков Н. В. Разрушение и диагностика металлов : монография. М. : Инновационное машиностроение ; Кемерово : Сибирская издательская группа, 2016. 479 с.

Колмогоров Г. Л., Кузнецова Е. В., Тиунов В. В. Технологические остаточные напряжения и их влияние на долговечность и надежность металлоизделий : монография. Пермь : Изд-во Перм. нац. иссл. политехн. ун-та, 2012. 226 с.

Оценка напряженно-деформированного состояния сварных соединений углеродистых сталей после различных режимов тепловложения акустическим методом / А. Н. Смирнов, В. А. Князьков, Н. В. Абабков [и др.] // Дефектоскопия. 2018. № 1. С. 40–46.

Khlybov A. A. [Effect of heat treatment on residual stresses in the zone of fusion of austenitic and vessel steels]. Metal Science and Heat Treatment, 2016, pp. 426-430. doi: 10.1007/s11041-016-0029-1

Husson D. [Measurement of surface stresses using Rayleigh waves]. IEE, Ultrasonic symposium (San-Diego, USA, 1982), pp. 889-892.

Zhan Y. [Experiment and numerical simulation for laser ultrasonic measurement of residual stress]. Ultrasonics, 2017, vol. 73, pp. 271-276.

Неразрушающий контроль : справочник : в 8 т. / под общ. ред. В. В. Клюева. Т. 4. : в 3 кн. Кн. 1. Акустическая тензометрия // В. А. Анисимов [и др.]. Изд. 2-е, перераб. М. : Машиностроение, 2006. 736 с.

Zeiger A., Jassby K. M. [Measurement of Acoustoelastic Coefficients of Rayleigh Waves in Steel Alloys]. Journ. of Nondestruct. Evaluation, 1982, vol. 2, no. 3, pp. 115-124.

Ducuennoy M. [Theoretical determination or Rayleigh wave acoustoelastic coefficients: comparison with experimental values]. Ultrasinics, 2002, vol. 39, pp. 575-583.

Hafezi M. H., Kundu T. [Peri-ultrasound modeling for surface wave propagation]. Ultrasonics, 2018, vol. 84, pp. 162-171.

Об ультразвуковом контроле толщины плазменной наплавки из медно-никелевого сплава на стальную цилиндрическую поверхность / А. Л. Углов, А. А. Хлыбов, М. В. Колесников [и др.] // Вестник ИжГТУ имени М. Т. Калашникова. 2019. Т. 22, № 3. С. 3–10. doi: 10.22213/2413-1172-2019-3-3-10

DOI: http://dx.doi.org/10.22213/2413-1172-2019-4-3-9

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Copyright (c) 2019 Bulletin of Kalashnikov ISTU

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

ISSN 1813-7903 (Print)
ISSN 2413-1172 (Online)