Some Features of Calculating Durability of Machine Components and Parts

Karelina M.Y., Kostyuk I.V., Cherepnina T.Y., Rogov V.R.

Abstract


The practice of trucking enterprises shows that, depending on the nature of the work performed, as a rule, there is not only the mandatory priority of several criteria, for example, when choosing a car, but also the need to obtain differentiable values of the coefficients of relative importance for a given level of efficiency. For example, when it is necessary to take into account a number of properties simultaneously, each of which is determined by a set of its indicators, and it is required to optimize the process of their implementation. In this case, it is necessary to obtain balanced values of the coefficients of relative importance following the tasks’ objectives. A scientific approach to solving this problem dictates the need to decide on not one, but several performance indicators.

Particular attention has been paid to the calculation of the durability distribution function at the design stage and the prototype development. The prospect of the Monte Carlo method for assessing the resource has been justified. An example of calculating the function of the distribution of the durability of a part under variable loads in various operating modes is given. The computed data obtained by the method proposed in the work are confirmed experimentally, which allows us to consider the possibility of using the method to assess the probability of destruction of mechanical systems. The method's universality determines its scope for various components and machine parts (bearings, gears, shafts, etc.).

Keywords


durability of machine parts, fatigue failure, Monte Carlo method, design, resource

Full Text

Galleys

PDF (Русский)
References References

Терентьев А. В., Ефименко Д. Б. К вопросу многокритериальной оценки срока эксплуатации автомобиля // Мир транспорта и технологических машин. 2018. №1 (60). С. 21–27.

Терентьев А. В., Тарасов И. В., Терентьева В. А. Иерархия системы управления рациональным сроком службы автомобилей // Экономика и менеджмент систем управления. 2016. № 4 (22). С. 46–50.

Maksimychev O.I., Ostroukh A.V., Pastukhov D.A., Nuruev Y.E.-O., Karelina M.Y., Zhankaziev S.V. Automated Control System of Road Construction Works. International J. of Applied Engineering Research, 2016, vol. 11, no. 9, pp. 6441-6446.

Maksimychev O.I., Ivakhnenko.A.M.,Ostroukh A.V., Pastukhov D.A., Nuruev Y.E.-O., Karelina M.Y., Zhankaziev S.V.Technology of monitoring and control algorithm design for earth-moving machine. International J. of Applied Engineering Research, 2016, vol. 11, no 9, pp. 6430-6434.

Терентьев А. В., Евтюков С. А., Гинзбург Г. Методология управления рациональным сроком службы автомобиля // Мир транспорта и технологических машин. 2017. № 1 (56). С. 3–10.

Терентьев А. В., Кирьенко Д. К. Влияние непланового текущего ремонта на рациональный срок службы автотранспортного средства // Вестник гражданских инженеров. 2016. № 4 (57). С. 178–182.

Терентьев А. В., Арифуллин И. В. Общая методика планирования многофакторного анализа при решении технологических задач авторемонтного производства // Транспорт: наука, техника, управление. 2019. № 11. С. 63–66.

Терентьев А. В., Арифуллин И. В., Таланова И. Н. Многокритериальная аналитическая модель определения срока эксплуатации автомобиля // Вестник Московского автомобильно-дорожного государственного технического университета (МАДИ). 2019. № 4 (59). С. 3–8.

Terentiev A.V., Kapustin A.A. Rational Lifetime of a Vehicle in Terms of Ensuring Security of Its Design. Transportation Research Procedia, 2017, no. 20, pp. 254-260.

Карелина М. Ю., Арифуллин И. В., Терентьев А. В. Аналитическое определение весовых коэффициентов при многокритериальной оценке эффективности автотранспортных средств // Вестник Московского автомобильно-дорожного государственного технического университета (МАДИ). 2018. № 1 (52). С. 3–9.

Dejan B. Momčilović, Aleksandar Subić, Ivana D. Atanasovska, Radivoje Mitrović. Combined Load Simulation vs Component Loads Simulation in Machine Design - a Case Study. FME Transactions, 2014, no. 42, pp. 48-55.

Nicola Pedroni, Enrico Zio, Francesco Cadini. Advanced Monte Carlo Methods and Applications. ASCE-ASME J. of Risk and Uncertainty in Engineering Systems, 2017, no. 3.




DOI: http://dx.doi.org/10.22213/2413-1172-2020-3-25-30

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2020 Bulletin of Kalashnikov ISTU

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


ISSN 1813-7903 (Print)
ISSN 2413-1172 (Online)