в рабочей зоне, с одной стороны, и не допускает перегрева элементов конструкции, с другой стороны. Анализируя полученные распределения температур и потоков, можно сделать вывод, что более предпочтительной является конструкция нагревателя, профиль которого представлен на рис. 7, *г*, поскольку для него помимо более равномерного распределения теплового потока в рабочей зоне имеем самую низкую температуру на отражателе.

Список литературы

1. Стандарт АВОК «Системы отопления и обогрева с газовыми инфракрасными излучателями» // Энергосбережение. – 2007. – № 2. – С. 40–44.

2. Газовые инфракрасные обогреватели // Аква-терм. – 2003. – № 2.

3. Проблемы теплоснабжения производственных помещений – есть решение! // Энергослужба предприятия. – 2007. – № 3.

4. Вологдина, М. С. Обоснование методики расчета процессов в инфракрасном нагревателе // Интеллектуальные системы в производстве. – 2007. – № 2.

5. Табунщиков, Ю. А. Математическое моделирование и оптимизация тепловой эффективности зданий / Ю. А. Табунщиков, М. М. Бродач. – М. : АВОК-Пресс, 2002. – 194 с.

6. *Уонг, Х.* Основные формулы и данные по теплообмену для инженеров. – М. : Атомиздат, 1979. – 216 с.

УДК 623.52

А. В. Кулагин, кандидат технических наук, доцент Ижевский государственный технический университет

ОПРЕДЕЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ И БАЛЛИСТИЧЕСКИХ ПАРАМЕТРОВ ГАЗА В СТВОЛЕ У ГАЗООТВОДНОГО ОТВЕРСТИЯ И МЕТОДИКА РАСЧЕТА ГАЗОВЫХ УЗЛОВ

Проводятся теоретические исследования некоторых параметров газа в стволе. Предлагается методика расчета газовых узлов базовых систем с анализом основных конструкционных и баллистических характеристик.

К термодинамическим параметрам газа в стволе, влияющим на работу газоотводного устройства, относятся такие величины, как начальное давление и начальная температура газа у газоотводного отверстия $(p_{\Gamma,0}, T_{\Gamma,0})$, импульс давления у газоотводного отверстия (i_{Γ}) . Кроме того, на процесс наполнения каморы будет влиять средняя скорость движения газа в стволе за время наполнения V_{cp} . На рис. 1...4 приведены зависимости давления, газовой постоянной, импульса и скорости газа $(p_{\Gamma}, RT_{\Gamma}, i_{\Gamma,A}, V_{\Gamma})$ на расстоянии газоотводного отверстия до дульного сре-

за $x_{r,d}$ для ствола под промежуточный патрон с длиной $L_c = 520$ мм.

Все численные величины приведенных выше параметров были получены путем расчетов по среднестатистическим опытным кривым давления в патроннике для промежуточного и винтовочного патронов [1].

[©] Кулагин А. В., 2008

Рис. 2. Зависимость $RT_{\Gamma}(x_{\Gamma, A})$

Рис. 3. Зависимость $i_{r,д}(x_{r,d})$

Очевидно, что полный импульс давления у газоотводного отверстия определится по формуле

$$i_{\Gamma} = i_{\Gamma.\Pi} + i_{\Gamma.\Pi},$$

где *i*_{г.п} – импульс давления пороховых газов у газоотводного отверстия за период после действия.

Приведенными кривыми можно воспользоваться для стволов с меньшей длиной.

При этом, вычисляя *x*_{г.д}, нужно исходить из длины ствола, для которой построен график. Значения импульсов при этом определяются формулами:

$$i_{\Gamma,\Pi 2} = i_{\Gamma,\Pi 1} \frac{\mathbf{B}_2 - 0.5 V_{\Pi 2}}{\mathbf{B}_1 - 0.5 V_{\Pi 1}}; \quad i_{\Gamma,\Pi 2} = i_{\Gamma,\Pi 1} - \Delta i_{\Gamma 1 2}$$

где Δi_{r12} – изменение импульса i_r , определенное по соотношению $L_{c2} - L_{c1}$.

Коэффициент полного действия газов в может быть определен по любой теоретической зависимости, например по [1; 2]:

$$B = 1,59 \frac{c_0}{V_{\rm g}},$$

где $c_0 = \sqrt{kgRT_{\rm d}}$.

Перейдем к методике расчета газовых узлов.

Для теоретических исследований использовалась методика, основанная на применении таблиц безразмерной величины:

$$\dot{z}_m = V_m \frac{S_{\rm II}}{bW_0}$$

Ниже в табл. 1 приведена зависимость $\dot{z}_m = f\left(\frac{a_1}{\sigma^2}, \sigma\right)$, с помощью которой мож-

но решать как прямую задачу (определять максимальную скорость V_m), так и ряд обратных задач, связанных с проектированием газоотводных устройств [3].

a_1						σ					
$\overline{\sigma^2}$	1,0	1,2	1,6	2,0	2,5	3,0	4,0	5,0	6,0	8,0	10,0
1,0	0,807	0,707									
0,8	0,782	0,666	0,521								
0,6	0,732	0,631	0,492	0,410							
0,5	0,698	0,620	0,476	0,405							
0,4	0,664	0,607	0,460	0,397	0,316						
0,35	0,655	0,598	0,452	0,392	0,312						
0,30	0,646	0,584	0,444	0,386	0,308	0,262					
0,25		0,564	0,436	0,380	0,308	0,258	0,194				
0,225		0,540	0,431	0,376	0,300	0,255	0,194				
0,200			0,426	0,370	0,295	0,252	0,194	0,159			
0,150			0,404	0,352	0,282	0,245	0,193	0,159			
0,125			0,388	0,338	0,275	0,240	0,192	0,158	0,128		
0,100			0,366	0,320	0,267	0,235	0,192	0,157	0,128		
0,08				0,295	0,256	0,229	0,190	0,156	0,128	0,095	
0,06					0,240	0,216	0,182	0,154	0,127	0,094	
0,05						0,206	0,175	0,152	0,126	0,094	0,075
0,04						0,192	0,166	0,149	0.126	0,094	0,074
0,03							0,151	0,146	0,126	0,094	0,074
0.025								0,143	0,125	0,093	0,074
0,020									0,125	0,093	0,073
0,015									0,125	0,093	0,073
0,010										0,092	0,072
0,006											0,071

Таблица 1. Определение зависимости безразмерной величины \dot{z}_m

Входы в таблицу вычисляются по начальным термодинамическим параметрам газа в стволе и конструктивным параметрам газоотводного устройства:

$$a_1 = 25,7\overline{M}_0 s_0 (1-3) \frac{\sqrt{RT_{\Gamma,0}}}{p_{\Gamma,0}} \frac{b\sigma_M}{s_{II}}; \quad y = \frac{b^2 \sigma_M W_0}{p_{\Gamma,0} s_{II}}.$$

В этих формулах

$$b = \frac{p_{\Gamma,O}}{0.915i_{\Gamma}}; \quad \sigma_M = \frac{M_1}{s_{\Pi}\phi},$$

где $\overline{\mu}_0$ – приведенное значение коэффициента расхода для газоотводного отверстия; з – коэффициент энергетических потерь в каморе; $\phi = 0.97$ – коэффициент, учитывающий влияние пружины.

Значения $\overline{\mu}_0$ зависят от угла наклона газоотводного отверстия α и средней безразмерной скорости движения газа в стволе за период наполнения λ_r и могут быть определены по следующей эмпирической зависимости:

$$\mu_{0} = \frac{0.72 + 0.28\lambda_{\Gamma}^{-0.82(1-\lambda_{\Gamma})}}{1 + \lambda_{\Gamma}e^{\lambda_{\Gamma}} \left[0.4 + 0.24\lambda_{\Gamma}(e^{\lambda_{\Gamma}^{2}} - 1) \right] \alpha} \Phi(\lambda_{\Gamma}),$$

где функция $\Phi(\lambda_r)$ определяется по табл. 3.

Значение α отсчитывается от оси канала ствола против часовой стрелки и подставляется в формулу в радианах. Величина $\lambda_{_{\Gamma}}$ определяется по приближенной зависимости:

$$\lambda_{\Gamma} = \frac{1}{4}\lambda_1 + \frac{3}{4}\lambda_2,$$

где λ_1 и λ_2 – средние значения безразмерной скорости газа у газоотводного отверстия до момента вылета пули и за период после действия соответственно;

$$\lambda_2 = z_{\Gamma} = \frac{L_{\Gamma}}{L_{c}},$$

где L_{Γ} – расстояние от пенька ствола до газоотводного отверстия.

Величина λ_1 определяется из соотношения (табл. 2), а M_1 – по формуле

$$M_1 = \frac{V_{\rm cp}}{a_{\rm cp}}.$$
$$V_{\rm cp} = \frac{V_{\rm r.o} + V_{\rm A} z_{\rm r}}{2}; \qquad a_{\rm cp} = \sqrt{kgRT_{\rm cp}}; \qquad RT_{\rm cp} = \frac{RT_{\rm r.o} + RT_{\rm r.a}}{2}$$

T7

Таблица 2. Определение зависимости λ₁

M_1	0,3	0,4	0,5	0,6	0,65	0,70	0,75	0,80
λ_1	0,316	0,420	0,522	0,623	0,672	0,721	0,770	0,817

Таблица 3. Определение функции $\Phi(\lambda_r, \alpha)$

λ_{Γ}	0,3	0,4	0,5	0,6	0,65	0,70	0,75	0,80
$\Phi(\lambda_r)$	1,057	1,104	1,167	1,251	1,303	1,362	1,428	1,500

Формула для μ_0 может быть представлена в следующем виде:

$$\overline{\mathbf{M}}_{0} = f(\lambda_{\Gamma}, \mathbf{\delta}) \Phi(\lambda_{\Gamma}).$$

Функция $f(\lambda_r, 6)$ затабулирована для нескольких ходовых значений α и приведена в табл. 4.

α,°	λ_r									
	0,40	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,80	
90	0,599	0,534	0,467	0,398	0,331	0,270	0,217	0,171	0,134	
143	0,500	0,429	0,362	0,298	0,241	0,191	0,149	0,116	0,089	
154	0,481	0,412	0,346	0,284	0,228	0,180	0,140	0,108	0,083	

Таблица 4. Определение функции $f(\lambda_r, \alpha)$

Коэффициент энергетических потерь η в каморе учитывает потери энергии на утечку через зазор между поршнем и цилиндром и на теплоотдачу.

Поскольку площадь зазора между поршнем и цилиндром зависит в основном от площади поршня, а потери на теплоотдачу определяются начальной поверхностью

каморы и быстротой рабочего процесса в каморе, т. е. в конечном итоге W_0 , то очевидно, что при ограниченных пределах изменения S_{Π} величина η зависит от параметра W_0 .

Расчеты, проведенные для ССВ, дали следующую зависимость η от величины W_0 (табл. 5).

Таблица 5. Определение зависимости $_{3}(W_{0})$

W_0, cm^3	1,79	2,38	5,32	8,16
3	0,142	0,157	0,135	0,117

Значение η для образцов под промежуточный патрон нужно брать в полтора раза меньше приведенных в этой таблице.

При пользовании табл. 1 необходимо вносить поправку, учитывающую отличие условий истечения газа из каморы в ствол от условий, принятых при составлении таблиц.

Это отличие будет обусловлено величиной $\frac{\mu_{03}}{\sqrt{\mu_0 \overline{\mu}_0}}$, которая принята при со-

ставлении табл. 1 равной 1,5.

Значение коэффициента расхода из каморы в ствол µ₀ определяется по следующей формуле:

$$M_0 = 0.85 - 0.42(1 \pm \cos \delta)\lambda_r$$

в которой знак «+» соответствует углам > 90°, а знак «–» – углам < 90°. Коэффициент расхода при истечении из каморы в ствол $\mu_{03} \sim 0.85$.

Для введения поправок была подсчитана величина $\frac{\Delta \dot{z}}{\dot{z}}$, соответствующая уве-

личению отношения $\frac{\mu_{03}}{\sqrt{\mu_0 \overline{\mu}_0}}$ в 1,5 раза по сравнению со значением, принятым

в таблицах.

Для определения величины $\frac{\Delta \dot{z}}{\dot{z}}$ при данном отношении $\frac{\mu_{03}}{\sqrt{\mu_0 \overline{\mu_0}}}$ можно пользо-

ваться зависимостями:

2

$$\frac{\Delta \dot{z}}{\dot{z}} = \frac{\frac{\mu_{03}}{\sqrt{\mu_0 \mu_0}} (1+0.37\eta)}{2.25} \xi \quad \text{при} \quad \frac{\mu_{03}}{\sqrt{\mu_0 \mu_0}} \ge 2.25;$$

$$\frac{\Delta \dot{z}}{\dot{z}} = \frac{\frac{\mu_{03}}{\sqrt{\mu_0 \mu_0}} (1+0.37\eta) - 1.5}{1.5} \xi \quad \text{при} \quad \frac{\mu_{03}}{\sqrt{\mu_0 \mu_0}} < 2.25.$$

Величина ξ подбирается по табл. 6 с использованием данных [3].

Таблица 6.	Подбор	величины	ξ
------------	--------	----------	---

a_1		σ									
$\frac{1}{\sigma^2}$	1,0	1,2	1,6	2,0	2,5	3,0	4,0	5,0	6,0	8,0	10,0
1,0	0,088	0,076									
0,8	0,104	0,097	0,083								
0,6	0,121	0,117	0,100	0,088							
0,4	0,137	0,138	0,155	0,125	0,093						
0,3	0,150	0,148	0,147	0,144	0,123	0,097					
0,25		0,153	0,154	0,153	0,138	0,117	0,104				
0,20		0,159	0,160	0,162	0,153	0,138	0,130	0,123			
0,125			0,170	0,176	0,175	0,168	0,169	0,183	0,114		
0,10			0,178	0,181	0,182	0,178	0,182	0,183	0,141		
0,08				0,184	0,189	0,186	0,192	0,195	0,164	0,120	
0,06					0,194	0,194	0,200	0,207	0,186	0,157	
0,05						0,198	0,208	0,213	0,197	0,175	0,124
0,04						0,202	0,213	0,219	0,208	0,194	0,154
0,03							0,218	0,225	0,220	0,212	0,185
0,025								0,228	0,225	0,221	0,200
0,015									0,236	0,240	0,230
0,010										0,250	0,245
0,005											0,257

Решение прямой задачи по описанной методике не вызывает затруднений.

Несколько подробнее следует остановиться на проектировании газовых узлов. Обычно при проектировании должны быть известны: положение газового узла на стволе, максимальная скорость подвижных частей V_m , которую необходимо получить, и приведенная масса подвижных частей M'. Кроме того, должен быть задан и угол наклона газоотвода α .

Имея эти данные, можно определить любой из трех конструктивных параметров газоотводного устройства S_0, S_n, W_0 . Пусть необходимо определить наименьшую площадь сечения газоотвода S_0 . Зная S_n , можно конструктивно задать зазор между поршнем и цилиндром и определить величину $S_{\mu} = S_n + \Delta S_m$. Определив по графикам термодинамические параметры газа в стволе, подсчитаем величину σ , а также $\dot{z}_r = V_m \frac{S_m}{bW_0}$.

Зная
$$\mu_{03}, \overline{\mu_0}, \mu_0, \eta$$
, определяем $\frac{\Delta \dot{z}}{z}$ и затем находим $\dot{z}_{\text{табл}} = \dot{z}_{\Gamma} + \Delta \dot{z}$.

По известным значениям \dot{z} и σ из табл. 1 находим $\frac{a_1}{\sigma^2}$, затем вычис-

ляем s₀.

Остальные варианты решаются методом последовательных приближений. Рассмотрим пример расчета газоотводного устройства при следующих данных:

 $L_{\Gamma} = 400 \text{ mm};$ $S_0 = 0,0661 \text{ cm}^2;$ $M' = 0,371 \cdot 10^{-8} \text{ kg} \cdot \text{c} \cdot \text{cm}^{-1};$ $W_0 = 1,787 \text{ cm}^3;$ $\alpha = 154^\circ;$ $S_{\Pi} = 0,696 \text{ cm}^2;$ $S_{\Pi} = 0,709 \text{ cm}^2.$ По кривым для винтовочного патрона по $x_{r,d} = 650 - 400 = 250$ мм находим:

$$p_{\Gamma,0} = 1200 \text{ kg/cm}^2$$
; $V_{\Gamma,0} = 722 \text{ m/c}$; $RT_{\Gamma,0} = 7,48 \cdot 10^6 \text{ kg} \cdot \text{cm/kg}$; $RT_{\pi} = 6,37 \cdot 10^6 \text{ kg} \cdot \text{cm/kg}$;
 $i_{\Gamma,\Pi} = 0,642 \text{ kg} \cdot \text{c/cm}^2$; $i_{\Gamma,\Pi} = 242 \text{ kg} \cdot \text{c/cm}^2$.

Полный импульс давления у газоотводного отверстия

$$i_{\Gamma} = i_{\Gamma,\Pi} + i_{\Gamma,\Pi} = 0,242 + 0,642 = 0,884 \,\mathrm{kr} \cdot \mathrm{c/cm}^2$$
.

Вспомогательные параметры:

$$b = \frac{p_{\Gamma,0}}{0,915_{i\Gamma}} = \frac{1200}{0,915 \cdot 0,884} = 1485 \text{ l/c};$$

$$RT_{cp} = \frac{RT_{\Gamma,0} + RT_{\Gamma,\hat{\partial}}}{2} = \frac{6,37 + 7,48}{2} \cdot 10^{6} = 6,92 \cdot 10^{6} \text{ kr} \cdot \text{cm/kr}; \quad z_{\Gamma} = \frac{L_{\Gamma}}{L_{c}} = \frac{400}{650} = 0,616;$$

$$a_{cp} = \sqrt{kgRT_{cp}} = \sqrt{1,25 \cdot 9,81 \cdot 6,92 \cdot 10^{6}} = 921 \text{ m/c};$$

$$M_{1} = \frac{V_{cp}}{a_{cp}} = \frac{620}{921} = 0,672.$$

Из табл. 2 находим $\lambda_1 = 0,692$ и $\lambda_2 = 0,616$, после чего определяем

$$\lambda_{r} = \frac{1}{4}\lambda_{1} + \frac{3}{4}\lambda_{2} = \frac{0,692}{4} + \frac{3}{4}0,616 = 0,625.$$

Из табл. 3 и 4 подбираем следующие параметры:

$$\Phi(\lambda_{\Gamma}) = 1,33; f(\lambda_{\Gamma},\alpha) = 0,20.$$

Далее вычисляем

$$\mu_0 = 0.85 - 0.42(1 \pm \cos \alpha)\lambda_{\Gamma} = 0.85 - 0.42(1 + 0.5)0.625 = 0.373.$$

По заданной величине $W_0 = 1,787 \text{ см}^3$ из табл. 5 находим $\eta = 0,142$. Вычисляем $\frac{a_1}{\sigma^2} = 0,157$, $\sigma = 2,54$. По этим величинам из табл. 1 определяем значение $\dot{z}_{\overline{m}} = 0,280$. Далее подсчитываем поправку $\Delta \dot{z}$:

$$\Delta \dot{z} = \frac{\mu_{03}}{\sqrt{\mu_0 \overline{\mu_0}}} = \frac{0.85}{\sqrt{0.266 - 0.373}} = 2,70.$$

Из табл. 6 определяем:

$$\xi = 0,166; \quad \frac{\Delta \dot{z}}{z} = \frac{\frac{\mu_{03}}{\sqrt{\mu_0 \mu_0}} (1+0,37)}{2,25} \\ \xi = \frac{2,70(1+0,37\cdot0,142)}{2.25} \\ 0,166 = 0,210; \\ \Delta \dot{z}^{\rm I} = 0,280\cdot0,210 = 0,059 ; \\ \dot{z}_{\partial} = \dot{z}_m - \Delta \dot{z}^{\rm I} = 0,280 - 0,059 = 0,221 ; \\ \Delta \dot{z}^{\rm II} = 0,221\cdot0,210 = 0,046; \end{cases}$$

$$\Delta \dot{z}_{cp} = \frac{\Delta \dot{z}^{I} + \Delta \dot{z}^{II}}{2} = \frac{0,059 + 0,046}{2} = 0,052;$$

$$\dot{z}_{\pi} = 0,280 - 0,052 = 0,228;$$

$$V_{m} = b \frac{W_{0}}{s_{\mu}} \dot{z}_{\mu} = 3740 \cdot 0,228 = 8,53 \text{ m/c.}$$

Используя предлагаемую методику, приведем расчет для двух образцов. Характеристики исследуемых образцов приводятся в табл. 7 и 8.

Vapartopuoturu	Тип си	стемы
Характеристики	6П-1	CCB-58
<i>L</i> _с , мм	415	650
$L_{\rm г.д}$, мм	229	400
<i>V</i> _д , м/с	710	840
<i>V</i> _{г.о} , м/с	601	722
$RT_{\Gamma.0}, \kappa\Gamma \cdot cm/\kappa\Gamma$	6,98·10 ⁶	$7,48 \cdot 10^{6}$
$RT_{_{\!\mathcal I}}, \kappa \Gamma \cdot {f cm}/\kappa \Gamma$	$6,02 \cdot 10^6$	6,37·10 ⁶
$i_{{}_{\Gamma,\Pi}},\kappa\Gamma\cdot c/c{}_{M}^{2}$	0,173	0,242
$i_{\rm г.п}$, кг · c/см ²	0,329	0,642
$p_{\Gamma,0},$ МПа	92,5	120

Таблица 7. Баллистические (термодинамические) данные

Таблица 8. Конструктивные данные газовых узлов

Vapartopuotuuu	Тип системы				
Характеристики	6П-1	CCB			
α, °	120	154			
$S_{\rm m}$, см ²	0,785	0,696			
$S_{\rm II}$, см 2	0,798	0,709			

Таблица 🤉	. Изменение	расчетных	параметров	газовых узлов
-----------	-------------	-----------	------------	---------------

Изделие	Позиция	S ₀ , см ²	W_0 , cm ³	M, кг · c ² · см ⁻¹	σ	$\frac{a_1}{\sigma^2}$
6П-1	1	0,102	1,48	0,351·10 ⁻³	3,99	0,215
	1	0,0660	1,79	0,371·10 ⁻³	2,54	0,157
	2	0,0615	2,38	0,422·10 ⁻³	3,86	0,0709
CCB	3	0,0906	5,32	0,416.10-3	8,46	0,0226
	4	0,1258	8,16	0,410.10-3	12,90	0,0135
	5	0,188	11,4	0,410.10-3	-	-

Следует отметить, что при малых объемах газовых камор V_m может возрастать также за счет воздействия пороховых газов на дно гильзы после открывания затвора, причем прирост скорости составляет величину порядка 0,5...1,0 м/с.

Поэтому действительная максимальная скорость должна быть несколько выше ожидаемой.

Список литературы

1. Кулагин, В. И. Газодинамика автоматического оружия / В. И. Кулагин, В. И. Черезов. – М., 1985. – 256 с.

2. Толочков, А. А. Теория лафетов. - М. : Оборонгиз, 1960.

3. Исследование газовых узлов изделий ССВ-58 и 6П-1. Отчет по хозрасчетной НИР, 1962.

УДК 519.853.6

Е. В. Прохоровская, студентка;

В. А. Тененев, доктор физико-математических наук, профессор;

А. С. Шаура, студент

Ижевский государственный технический университет

ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ С ВЕЩЕСТВЕННЫМ КОДИРОВАНИЕМ ПРИ РЕШЕНИИ ЗАДАЧ УСЛОВНОЙ ОПТИМИЗАЦИИ

Предложен алгоритм решения задач условной оптимизации с применением генетических операторов с вещественным кодированием. Метод не требует задания весовых коэффициентов штрафной функции и допустимые решения выбирает на этапе отбора. Показана высокая эффективность метода на тестовых функциях большой размерности.

Рассматривается задача условной оптимизации, связанная с минимизацией нелинейной функции, определенной в некоторой области:

$$F(X) = F(x_1, x_2, ..., x_N) \to \min; X \in G \cap D - \text{целевая функция;}$$
(1)

$$D = \{X = (x_1, x_2, ..., x_N) | a_i \le x_i \le b_i, 1 \le i \le N\} - \text{пространство поиска};$$
(2)

$$G = \{X = (x_1, x_2, ..., x_N) | g_i(X) \le 0, i = 1, 2, ..., k\} - \text{допустимое множество.}$$
(3)

Для решения задач вида (1)...(3) не существует какого-либо универсального метода, который бы давал одинаково хорошие результаты независимо от вида целевой функции F(X) и функций ограничений $g_i(X)$. Как правило, задачу условной минимизации сводят к задаче безусловной минимизации путем применения штрафных функций, после чего находят решение, применяя генетические алгоритмы или градиентные методы. Генетические алгоритмы обладают тем преимуществом, что позволяют минимизировать многоэкстремальные функции и при этом нечувствительны к начальному приближению.

При использовании штрафных функций возникает проблема определения весовых коэффициентов, а сама функция часто имеет овражный характер. Разные целевые функции и ограничения требуют тщательного подбора коэффициентов, что далеко не всегда удается сделать успешно, а при изменении условия исходной задачи возникает необходимость в новом подборе. С целью решения этой проблемы в рабо-

[©] Прохоровская Е. В., Тененев В. А., Шаура А. С., 2008