ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

УДК 539.213(045)+681.2.08(045)

<.:. edk_ , доктор технических наук, профессор; Ижевский государственный технический университет, Россия <. <. ;kh/hgh/ , кандидат технических наук, старший научный сотрудник; B. G. KdhjphZ , аспирант; Институт прикладной механики Уральского отделения РАН, Россия 6dheZ / BkcZ, кандидат технических наук, доцент; BkkZ FmkkZ, кандидат технических наук, профессор Дамасский университет, Сирия

ИССЛЕДОВАНИЕ ТОПОЛОГИИ ПОВЕРХНОСТИ СИТАЛЛА МЕТОДОМ ПОЛУКОНТАКТНОЙ АТОМНО-СИЛОВОЙ МИКРОСКОПИИ^{*}

j<u>a</u>mevlZlu ih<u>j</u>oghklb I<u>k</u>lZgu bkkeftZgbv lhihehlbb kblZeehhc ihehdb KL-50-1 gZ g_ KH₂-eZajghlh k ihfhsvx ihke_ hacklby bah**f**Zgby baemqgby. Ihemqgu ljofjgu_ ahghhh fbdjhkdhiZ Solver P47 Pro \ jbf_ kdZgbjmxs<u>h</u> ihemdhglZdlghc Zlhfgh -kbehhc fbdjh kdhibb . Ijhg ZgZebaihemqgguo bah[Zgbc

Ключевые слова: ситалл, сканирующая зондовая микроскопия, топология поверхности

Современные технологии, нанотехнологии, лазерные технологии требуют оценки качества поверхности изделий. Под термином «качество» может пониматься шероховатость поверхности, ее профиль, твердость, однородность и другие характеристики, оцениваемые по различным методам и методикам. Шероховатость поверхности влияет как на прочностные, так и на различные процессы, связанные с дальнейшей обработкой материалов в машиностроении и микроэлектронике (например, производство микросхем, электроннолучевая и лазерная сварка металлов).

В настоящее время для исследования поверхности широкое распространение получает сканирующая зондовая микроскопия, имеющая большое количество методик. Топологию поверхности эффективно исследуют одной из методик зондовой микроскопии – атомно-силовой микроскопией. Такими исследованиями занимаются западные страны, имеющие большой потенциал в области лазерных и нанотехнологий. Но многие страны (Сирия, Китай, Чехия) эти методы используют незначительно ввиду отсутствия квалифицированных специалистов и приборов. Стажировка, подготовка специалистов, в том числе и зарубежных, в области сканирующей зондовой микроскопии ведется в Ижевском государственном техническом университете в центре коллективного пользования «Исследование наноматериалов» [1].

Методы получения информации о рельефе и свойствах поверхности с помощью атомно-силовой микроскопии (ACM) условно делят на две группы – контактные квазистатические и бесконтактные колебательные. Контактные ACM-методики производятся при непосредственном механическом взаимодействии зонда с поверхностью, что часто приводит к поломке зондов и разрушению поверхности образцов в процессе сканирования. Чтобы избежать этого, используют колебательные

[©] Алексеев В. А., Бесогонов В. В., Скворцова И. Н., Або Исса Н., Мусса И., 2011

^{*} Работа выполнена при финансовой поддержке федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» (государственный контракт П2513).

АСМ-методики, существенно уменьшающие механическое воздействие зонда на поверхность в процессе сканирования. На рис. 1 приведен график зависимости силы взаимодействия кантилевера с поверхностью в зависимости от расстояния кантилевер – поверхность (линия 1) и колебаний кантилевера относительно точки z_0 (линия 2).

Jbk. 1. Выбор рабочей точки при «полуконтактном» режиме колебаний кантилевера [2]

 z_0 — расстояние между положением равновесия колеблющегося кантилевера и поверхностью. При работе в этом режиме возбуждаются вынужденные колебания кантилевера вблизи резонанса с амплитудой порядка 10–100 нм. Кантилевер подводится к поверхности так, чтобы в нижнем полупериоде колебаний происходило касание поверхности образца.

Кантилевер представим в виде упругой консоли (с жесткостью k) с сосредоточенной массой m на одном конце (рис. 2). Другой конец консоли закреплен на пьезовибраторе ПВ.

Jbk. 2. Модель зондового датчика в виде упругой консоли с массой на конце [2]

При сканировании образца регистрируется изменение амплитуды и фазы колебаний кантилевера. Взаимодействие кантилевера с поверхностью в «полуконтактном» режиме состоит из ван-дер-ваальсового взаимодействия, к которому в момент касания добавляется упругая сила, действующая на кантилевер со стороны поверхности [2, 3]. При этих условиях уравнение движения кантилевера можно записать в следующем виде:

$$z + \frac{\omega_0}{Q} z + \omega_0^2 \left(z(t) - z_0 - u_0 \cos(\omega t) \right) = \frac{\omega_0^2}{k} F_{PS}(z(t)),$$
 [2]

где Q – параметр добротности системы $Q = \frac{\omega_0 m}{\gamma}$, $F_{PS}(z(t))$ – (probe-sample) комби-

нированная сила взаимодействия кантилевера с поверхностью, координата *z* отсчитывается от поверхности, $u = u_0 \cos(\omega t) - гармонические колебания пьезовибратора$ $с частотой <math>\omega$, $\omega_0 -$ частота собственных колебаний кантилевера. «Полуконтактный» режим реализуется только тогда, когда расстояние z_0 меньше амплитуды колебаний кантилевера:

 $z_0 < Qu_0$.

Амплитуда и фаза колебаний кантилевера зависят от степени взаимодействия поверхности и зонда в нижней точке колебаний кантилевера. Поскольку в нижней точке колебаний зонд механически взаимодействует с поверхностью, то на изменение амплитуды и фазы колебаний кантилевера в этом режиме существенное влияние оказывает локальная жесткость поверхности образцов.

Сдвиг по фазе между колебаниями возбуждающего пьезоэлектрического вибратора и установившимися колебаниями кантилевера можно оценить, если рассмотреть процесс диссипации энергии при взаимодействии зонда с образцом. При установившихся колебаниях энергия, приходящая в систему, в точности равна энергии, рассеиваемой системой. Энергия E_{EX} (external), поступающая в систему от пьезовибратора за период колебаний:

$$E_{EX} = \int_{t}^{\omega} k u_0 \cos(\omega t) \frac{dz}{dt} dt.$$
 [2]

Она расходуется на восполнение потерь при взаимодействии кантилевера с атмосферой и образцом. Энергию E_{PA} (probe-atmosphere), рассеиваемую в атмосферу за период, можно вычислить следующим образом:

$$E_{PA} = \int_{t}^{t+\frac{2\pi}{c}} \frac{m\omega_0}{Q} \left(\frac{dz}{dt}\right)^2 dt.$$
 [2]

Энергия E_{PS} (probe-sample), идущая на восполнение потерь при диссипативном взаимодействии зонда с образцом, равна:

$$E_{PS} = \int_{t}^{t+\frac{2\pi}{10}} F_{PS}(z) \frac{dz}{dt} dt.$$
 [2]

Из условия баланса следует:

$$E_{EX} = E_{PA} + E_{PS}$$

Предполагая, что установившиеся колебания кантилевера имеют вид $z = A \cdot \cos(\omega t + \phi)$, получаем:

$$E_{PS} = \frac{\pi k \omega_0 A}{Q} \sin \varphi - \frac{\pi k \omega A^2}{\omega_0 Q}$$

Отсюда для фазового сдвига получается следующее выражение:

$$\sin \varphi = \frac{\omega A}{\omega_0 u_0} + \frac{Q E_{PS}}{\pi k u_0 A}.$$

Таким образом, фазовый сдвиг колебаний кантилевера в «полуконтактном» режиме определяется энергией диссипативного взаимодействия зонда с поверхностью образца.

Формирование АСМ изображения поверхности в режиме колебаний кантилевера происходит следующим образом. С помощью пьезовибратора возбуждаются колебания кантилевера на частоте ω (близкой к резонансной частоте кантилевера) с амплитудой : ω . При сканировании система обратной связи АСМ поддерживает постоянной амплитуду колебаний кантилевера на уровне A_0 , задаваемом оператором ($A_0 < : \omega$). Напряжение в петле обратной связи (на *z*-электроде сканера) записывается в память компьютера в качестве АСМ изображения рельефа поверхности. Одновременно при сканировании образца в каждой точке регистрируется изменение фазы колебаний кантилевера, которое записывается в виде распределения фазового контраста.

В режиме полуконтактной ACM микроскопии на сканирующем зондовом микроскопе (C3M) Solver P47 PRO были исследованы ситалловые подложки CT-50-1, обработанные лазерным излучением.

Аморфизация поверхности ситалла осуществлялась на лазере Trotec Speedy 100. Длина волны когерентного излучения $\lambda = 10,6$ мкм. Диаметр пучка в фокусе линзы 75 мкм, мощность пучка на образце 10 Вт, максимальное значение плотности мощности излучения на поверхности составляло $1,8 \times 10^9$ Вт/м². Интерфейс установки позволяет изменять плотность мощности и скорость перемещения пучка по поверхности от 0 до 100 %.

Размер области воздействия лазерного излучения на поверхности 3 × 10 мм и задавался в программе CorelDRAW. Образец помещался в фокусе линзы, и обработка поверхности производилась при перемещении лазерного пучка по поверхности с заданными значениями скорости перемещения пучка и его мощности. При этом максимальная скорость перемещения равна 280 см/сек.

При получении аморфной пленки на поверхности подложки поверхностный слой находится в напряженном состоянии. Причиной появления напряжений является различие объемов аморфной и поликристаллической части подложки, не подвергающейся воздействию излучения. Напряжения приводят к отслаиванию аморфизированного слоя от подложки. С целью релаксации напряжений в поверхностном слое и, как следствие, ликвидации отслаивания полученной пленки отработан процесс аморфизации при повышенной температуре. Подложка помещалась в специальный резистивный нагреватель и обрабатывалась лазерным излучением в нагретом состоянии.

На рис. 3–4 представлены сканы необработанной подложки и подложки, обработанной на CO_2 -лазерной установке Speedy 100 при температуре 530 °C, 50 % мощности, 10 % от максимального значения скорости перемещения луча по поверхности, угол падения луча на поверхность равен 25°.

Работы по сканированию образцов в режиме атомно-силовой микроскопии выполнены совместно с сирийскими коллегами в рамках договора о сотрудничестве между ИжГТУ и Дамасским университетом.

Jbk. 3. Поверхность ситалла до воздействия лазерного излучения

Jbk. 4. Поверхность ситалла после воздействия лазерного излучения

Выводы

• Показано, что лазерное излучение позволяет изменить топологию поверхности ситалловой подложки таким образом, что величина выступов уменьшается до 6 нм.

• Экспериментально показано, что сканирующий зондовый микроскоп Solver P47 PRO позволяет исследовать топологию поверхностей, обработанных лазерным излучением, и оценивать ее шероховатость, что важно в задачах исследования воздействия лазерного излучения на материалы, а также выявления микротрещин и оценки применимости конструкций в изделиях, работающих в экстремальных условиях.

Список литературы

1. ;_kh]hgh\ <. <., *KdhjphZ* В. G. Прецизионный контроль топологии поверхности ситалловых подложек СТ 50-1 // Измерит. техника. – 2010. – № 3. – С. 68–70.

2. Миронов В. Л. Основы сканирующей зондовой микросокпии : учеб. пособие для вузов / Ин-т физики микроструктур РАН (Нижний Новогород). – М. : Техносфера, 2004. – 144 с. – (Мир физики и техники). URL: http://depositfiles.com/ru/files/26d6aiis0 (дата обращения: 29.04.2011).

3. ;Zlbabg J. A, =Zeeyfh\ J. J. Физические основы сканирующей зондовой микроскопии : учеб. пособие. – Уфа : РИО БашГУ, 2003. – 82 с.

V. A. Alekseev, Doctor of Technical Sciences, Professor, Izhevsk State Technical University

V. V. Besogonov, Candidate of Technical Sciences, Senior Research Scientist, Institute of Applied Mechanics UB RAS

I. N. Skvortsova, Postgraduate Student, Institute of Applied Mechanics UB RAS *Nikola Abo Issa*, Candidate of Technical Sciences, Professor, Damascus University, Syria *Issam Moussa*, PhD, Engineer, Professor, Damascus University, Syria

Glass Ceramics Surface Topology Investigation by the Atomic Force Microscopy in a Tapping Mode

The results of the surface topology study of a glass ceramic KL-50-1 substrate after the effect of KH2-laser radiation are presented. Three-dimensional images using a scanning probe microscope Solver P47 Pro in a tapping mode of the atomic-force microscopy are obtained. The analysis of the images obtained has been carried out.

Keywords: glass ceramics, scanning probe microscopy, surface topology

Получено: 25.04.11

УДК 623.592

К. N. ¶jh\ , кандидат технических наук, научный сотрудник; Институт прикладной механики Уральского отделения РАН <. K. DZaZdh\ кандидат технических наук, профессор; Ижевский государственный технический университет <. <. Dhjh{gbdh\ , кандидат технических наук, научный сотрудник Институт прикладной механики Уральского отделения РАН

РЕГИСТРАТОР ТОЧКИ ПРИЦЕЛИВАНИЯ НА БАЗЕ ВИДЕОКАМЕРЫ

JKkt DZ ky hafh hklv bki hevah Zgby bhdZfju &y ihklj hgby jhklj Zlhj lnqdb ijbpeb Zgby wedljhggh hkljedh ljgZjZ . Nhjfmebjmxlky ljh Zgby d Zii ZjZlgh fm hkjegbx .

Ключевые слова: стрелковый тренажер, видеокамера, репер

Для обучения стрельбе учащихся в средних общеобразовательных школах или структурах ДОСААФ необходимо иметь электронные стрелковые тренажеры, которые были бы проще и дешевле тренажеров, используемых в Российской Армии, например [1].

В статье рассматривается возможность использования в стрелковом тренажере с целью уменьшения его стоимости регистратора точки прицеливания на базе миниатюрной видеокамеры, применяемой в охранных системах.

Выбор видеокамеры определяется следующими требованиями:

 размер камеры должен позволять монтировать ее непосредственно в ствол имитатора оружия, т. е. диаметр оптики и электроники не должен превышать 5 мм;
камера должна иметь автономное электропитание;

 для достижения большей чувствительности и разрешающей способности камера должна быть черно-белой;

4) камера должна быть чувствительна к ИК-диапазону;

5) с учетом дальности расположения мишени (L = 6 м) угол обзора камеры должен быть в пределах 10–20°; при больших углах обзора возникает необходимость применения корректирующей оптики;

6) разрешающая способность изображения с видеокамеры не должна быть меньше 320 × 240 точек;

[©] Егоров С. Ф., Казаков В. С., Коробейников В. В., 2011