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ANALYSIS ROBUST STABILIZATION FOR MARKOYV JUMP LINEAR SYSTEMS

S. M. Hussin, Post-graduate, Kalashnikov ISTU
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We are concerned with the problems of analysis stabilization and analysis robust stability for Continuous Time Markovian
jump linear systems. The Markovian jump linear system includes parameter uncertainties both in the mode transition rate matrix
and in the system matrices. Sufficient conditions are ensured to systems considered to be stable in the mean square stable are pre-
sented in the form of linear matrix inequalities. The conclusion of previous condition of robust stability for Continuous Time Mark-
ovian jump linear systems is presented in the form of a theorem. Sufficient condition for the design of controller’s robust state-
feedback where the closed-loop system quadratic mean square stable. The robust stabilization problem for Markovian jump linear
systems was analyzed and state-feedback controller is designed such that the resulting closed-loop system is mean square stable.
Finally, numerical example is provided to illustrate the effectiveness of the proposed theoretical results, the robust stabilizing con-
troller for a Continuous Time Markovian jump linear system obtained by the MATLAB LMI Toolbox.
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Introduction

Markovian jump system (MIJS) is a special class of
dynamic systems subject which abrupt changes in their
dynamics, and the model of system is model linear sys-
tems or nonlinear systems, Markov chain determined
switching between the models [1]. The literature sur-
rounding this topic is now extensive [2—6]. MJSs is spe-
cial case of hybrid systems with the switching matrix
governed by a Markovian chain. From a mathematical
view, MJSLs can be regarded as a special class of sto-
chastic linear systems with system matrices changing
randomly at discrete- time points governed by a Markov
process and remaining time- invariant between random
jumps. Over the past decades, a great amount of attention
has been paid to MIJSs, due their wide applications in
systems.

Applications of MJLSs in many real-world applica-
tions, economics, robotics, air vehicles, satellite dynam-
ics, and wireless communication, among others such as
economic system [7, 8], flight system [9, 10], robotic
systems [11], power system [12, 13], communication
system [14] and systems of networked control systems
[15].

In recent years, to ease the practical application of
MILSs, considerable efforts have been made, and a lot of
progresses have been made on topics such as: 1) model-
ing of MJSs; 2) control and filtering; 3) analysis stabili-
zation and analysis stability robust; 4) Error detection
and fault tolerance; 5) H,, Control; and so on.

Notations: We will denote by R” the n-dimensional

Euclidean space and by B(R",R’”) the norm bounded

linear space of all matrices  with
B(R"):B(R",R"). For a matrix A:B(R"), A" s

nxm

the transpose of 4. S, is the set of all nxn symmetric

matrices. 420 (resp., A<0): will mean that the
symmetric  (resp., semi-negative definite) matrix

A= B(R") is positive semidefinite, and 4 >0 (resp.,
A < 0): that is positive definite (resp., negative definite)

matrix. E() is the expectation operator. / is the nxn

identity matrix.

Problem statement

Let the following Markovian jump linear systems
(MJLS), defined on a complete probability space

(Q,F,P), are described as:
2(1)=A(0(2))x(t)+ B(0(¢))u(z), 120. (1)

Where x(r)eR" is standing for the state variable of
the system, u(¢) €R" is the control variable. We define
the set S={1,2,..., N}, {9(1), t> 0} is a continuous-
time Markov chain on the probability space, takes values
on set S with transition probability matrix IT = (“l;,-)

NxN

given by [16]
ni/.h+0(h), i#j,

P(9(r+h)=j|9(t):i):{ )

l+m,h+o(h),i=].
And the notation o(/) denotes a function on #, i.e.,
o(h)
h
sents the transition rate from i to j, which satisfies

T, = _Znif for all ieS . Let for 1= (Wi,- )NXN
J#

ror between them is referred as to Am, which can take

h>0,%in& =0 and n; 20 (i,jeS,i;éj),repre—

the er-

any value in [-¢;,¢&;].

Suppose Q(t) denote to the second-order moments
of the state vector x(z),ie. O(t)= E(x(t)-xT (t)) and
define Q, (1) = E(x(t) x' (t)| ()= i) . Then, given the

N
theory of total probability, Q(¢)=>.0,(¢). The N
ol
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differential equations governed of the components of the
second-order moment

Q'j(t)=A/.Qj(t)+Qj(t)AjT+Zni].Qi(t). 3

The following properties are easy to see hold.
Lemma 1. Let the solution Of (t) of (3) with initial

Q!(0).  With
o, (O) = a0} (0) the solution of (3) is O, (t) % (t) ,
Vt>0.

Lemma 2. If, at a certain time instant 1, Qj (r)<0,
VjeS then Q,(t)<0, Vi>1, jeS§.

Lemma 3. Let QY (7) and O () be the solution of
(3) with initial condition Q¢(0) and Q(0) respec-
tively. If Q7 (0)<0’(0).¥j €S, then Q°(1)<Q' ().
Vies.

Definition 4. The MJLS (1) is said to be mean square
stable (MS-stable) if LmE(x(1)')=0 for any initial

condition initial condition

condition x(O) and any initial probability distribution
n, . Moreover, the MJLS (1) is exponentially mean
square stable (EMS-stable) if there exist positive real

scalars o and B such that E(x(l)2)< a-e’.

Proposition 5. The Markovian jump linear system of
(1) is MS-stable if and only if the coupled LMIs

4,0,(1)+0, (t)A].T +Z”iji (1)

are possible for a matrices { 0:0 € S”x”} .

Theorem 6. MJLS (1) is MS-stable if there exist
positive definite matrices Q,, i € S such that the follow-
ing LMI’s are satisfied

A,0,(1)+0, (1) 4] +Zn,.jQ,.(t)<o. (4)

Robust stability analysis

The aim of this part is to analysis robust stabilization
problem for MJLS (1), we develop a new condition for
analyze the robust stability property by used LMlIs, and
design a state-feedback controller such that closed-loop
system is quadratically MS-stable.

Theorem 7. Markovian jump system (1) (for initial

condition u(7)=0) is quadratically mean square stable
if there are: {P,,:PieS”X”, ieS}, {ki:ki eR’, ieS},
{A,:A,eR",i,jeS,i#j} and E,, H

known constant real matrices of appropriate dimensions,
where

H, are

ai?

Qi PIEI Mi
E'P A1 0 |<0forallieS. (5)
M [T 0 —A
Such that

N 1 N
T 2 T
O =APR+RA +3 P, +2 Ayl + M HH,,
J= J=1

J#

M,=(P-P,..,P~F ,P—F

i

A, =diag Ryl h g T e M1 )

i(i-1)

Inequality (5) is Schur complement equivalence

N
AP +PA"+> m P +\HH, +iP,.E,.E,.T -
j=1 }\’i
N )\‘ 1 2
+Y | —~Lel+—(P -P) |<0. 6
3| St -r) ©

J#i

Let the state-feedback control law
u(t):K(O(t))~x(t). 7

Where K, =K (0(t)=i)eR™" is the controller

which determined. The closed-loop system is

A(0(1))+B(0(1))-K (1) + £(0())- F (0(z))x

X[Ha(9(t))+Hb(9(l‘))-K(Ha(e(t) )}
xx(t). (8)

The following theorem solves the robust stabilization
problem (RSP) for MILS (1).

The following theorem offers a condition of robust
stability for MJLS (1).

Theorem 8. Let MJLS (1), and suppose a state-
feedback control law (7) where the closed-loop system
(8) is quadratically MS-stable if there exist sets of matri-
ces satisfying the coupled of LMIs

X

x(1)=

Qli (HaiXi + HbiY; )T Xi
H,X,+H,Y, — 0 [<0, (9

X! 0 -Z,

QZi Mi
<0, 10
[ A (10)
with equality constraints:

PX. =1,VZ =1, (11)

0, =(4X,+BY,) +(AX, +BY,)+a,EE

[ ey
N 1 N )
Oy =V, + 2 P+ 3 eyl
J=1 4/=1
J#

The controller (7) is given by the form K, =Y. P.
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Proof. From the inequality (6), and put ¥, = Z;" for
all 7 we find

N

S $[Brare Lo o

J=1 J=1, ij
J#

The previous inequality is equivalent to inequality
(10) in form Schur complement equivalence. Replacing
4, and H, in (6) with 4 +BK, and H ,+H_K, re-
spectively, we find
1
A

i

+h (H, +H,K,) (H, +H,K,)+V,<0.

P(A4+BK,)+(4,+BK,) P+—PEE'P+

i

Therefore, the closed-loop system (8) is quadratically
MS-stable if all the above inequality are holds.

We apply the changes of variables
Y, =K.X,, o, =L;" after multiply by P,

i i

X =P",

i

to both sides

-1
of the above inequality yield
(4.X, +BY,)+(AX, +BY) +o.EE +
+a; (H, + H,K,) (H, +H,K,)+XV,X, <0,

which is equivalent to (9) by form Schur complement
equivalence again.

Numerical example

We give an example of simulation to elucidate the
usefulness and of the theory developed in this paper.
Focuses on the design of a robust stabilizing controller to
the MJLS.

Consider a Markovian jump linear system (1). The
system data with the initial conditions of (1) are as fol-
lows:

1

_[0.176 0.784 _[0.547 0.127
10.926 0.136]” "% 0.616 0.965|

0.299 0.741
Bl = N B2 = 5
0.447 0.795
-6.700 6.700 1
I1= , Xy = .
6.918 0.136 -1
The robust stabilizing controller for a Markovian

jump system can be obtained by the MATLAB LMI
Toolbox:

k, =[~1.607 —1.489], k, =[-0.310 —2.679].

The resulting closed-loop system when applying this
controller makes become mean square stable (Fig. 1).

1.5 T T T T T T T T T

1
05
0
I
05
|
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0 5 0 15 20 25 30 35 40 45 50
time (second)
Fig. 1. MS- stable closed-loop system
Conclusion

In this paper reviewed the problems of stability and
stabilization of Markovian jump linear systems. The
LMI-based sufficient conditions ensuring systems con-
sidered to be mean square stable. Numerical example is
provided to show the applicability of the developed
method for stabilizing controller of MJLS.
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k% %k
AHajau3 poﬁacnloﬁ CTAOMIIN3ANMY JTUHEHHBIX CHCTEM C MapKOBCKMMH CKaYKaMHu

C. M. Xyccun, acnmpant, x['TY umenn M. T. Kanamraukosa, Moxesck, Poccunst
B. I'. Cyghusinos, noxrop texandeckux Hayk, VxI['TY nmenu M. T. Kananraukosa, Mbxesck, Poccnst

B cmamve paccmampusaemces npobnema ananuza ycmoudugocmu u pooacmHou Cmabuiu3ayuy HenpepvleHvIX TUHEUHbIX CUC-
mem ¢ MapKogckumu ckaukamu. Jluneinas cucmema ¢ MapKOSCKUMU CKAYKAMU COOEPAHCUM HeonpedeneHHble Napamempbl KaK 6
NepPexoOHbIX MAMpUYAx COCMOSIHUL, MaK U 8 Mampuyax cucmemol. JJocmamoutsle YCio8us, 2apanmupyouue acuMnmomuieckyro
YCMOUYUBOCTIL PACCMAMPUBAEMOL CUCEMbL 8 CPEOHEKEAOPAMUYECKOM CMbLCe, NPEeOCMAGIeHbl 8 8U0e TUHEUHbIX MAMPUYHBIX
Hepagencms. Bvl6o0 npednodicennoo viute yCiogust pobacmHoll ycmouuugocmu OJisi HeNpePbleHbIX JUHEIHbIX CUCTNEM C MAPKO6-
CKUMU CKAUKAMU NPeOCmasiel 6 uoe meopemvl. JJocmamounoe yciogue no36oisiem npoeKmuposanms KOHMpPOoJiep ¢ podacmuol
00pamHuoll C6:3b10 MAKUM 00PA30M, YMO NOJVYEHHAS 3AMKHYMAS CUCMEMA AGNSemCcs YCMOUYUBOU 6 CPeOHeK8a0paAmuyecKkom
cmvicne. Tlposeden ananus npobremvt podacmuol cmaburuzayuu OJist TUHEUHbIX CUCTEM ¢ MAPKOGCKUMU CKAYKAMU U CHPOEKMU-
POBAH KOHMPOJLIEP ¢ 0OPAMHOU C653b10 MAKUM 00PA30M, YMO NOJIYVHEHHAS 3AMKHYMAs, CUCIEMA SGISemcs YCMOUYUeol 6 cpeoHe-
KeaopamuyHeckom cmoicie. B konye cmamou, ons uiniocmpayuu 3¢ppexmugnocmu npeodnazaemvix meopemuyeckux pe3yivmamos,
npeocmasiien YUCIEHHbLI npumep pobacmmozo cmabuiuupylouie2o KOHMpOLepa Oisi TUHEUHbIX CUCTEM ¢ MAPKOBCKUMU CKAYKA-
mu, nonyyennwiti ¢ nomowwvro MATLAB LMI Toolbox.

KnrwueBble ¢jI0Ba: TUHEHHBIE CUCTEMBI C MAapKOBCKHMMH CKadKaMH, aHAJIU3 pO6aCTHOI>‘I CTa6I/IJII/138.HI/II/I, JIMHEWHBIE MaTpHUYHBIC
HEPABCHCTBA.

ITonyueno: 14.11.19





