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Robust H,, Control of Markov Jump Linear Systems
with Uncertain Switching Probabilities
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This paper the problem of robust H,, control for Markov jump systems with uncertain transition rates is investi-
gated. A robust H,, performance criterion is established for a given Markov jump system. The robust H,, control
performance analysis in terms of coupled linear matrix inequalities is proposed, then convex optimization problem
is solved with constraints defined in terms of the solvability of the linear matrix inequalities. Based on the solution
of the optimization problem, the condition of robust stochastic stability for closed-loop systems is found, which
minimizes disturbance attenuation level. Depending on the developed performance criterion, the H,, state-feedback
controller is designed too, which warranties the robust H,, control of the closed-loop system. All the conditions are
linear matrix inequalities, and therefore they can be solved by any linear matrix inequalities solver. Finally, a nu-
merical example is given to show the effectiveness of the method of robust H,, control for Markov jump systems.
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Introduction

Many dynamic systems undergo sudden ran-
dom changes, which may be caused by random
component failures and repairs, sudden environ-
mental changes, changes in the interconnectedness
of subsystems, etc. Usually most conventional dy-
namic systems are powerless to overcome with
these abrupt random changes. Markov jump sys-
tems (MJSs) are special class of stochastic hybrid
systems (dynamical systems that exhibits both
continuous and discrete dynamic behavior). MJSs
have applied in many fields, uncrewed aerial vehi-
cle [1], solar power stations [2], communication
protocols [3], control of power systems [4], eco-
nomic systems, [5].

MJSs have been investigated extensively and
many beneficial results have been obtained, such
as the stabilizability, and continuous-time MJL
guadratic control [6], controller design for MJL
[7-9] and robust linear filtering for MJL [10-12].
The nonlinearity in systems may lead to unstable
behavior of the systems, robust stabilization and
H,, control for nonlinear systems with Markovian
jump [13-15].

The transition rates are essential to set the
MJSs. So, the main investigation on MJSs is to
assume that the transition rates are well known. In
application, the estimated values of transition rates
are only available, and estimation errors, i.e., in
the transition rates, the uncertainties may be given
instability or deterioration of a system. There have
been some works regarding control of this type of
system [16], the robust stabilization and control

problems are considered for MJS with uncertain
switching probabilities by using restrictive Young
inequality. In [17] results by using general Young
inequality less conservative than those of [16] are
proposed. Because of the use of Young inequality,
the proposed controller design methods in [16, 17]
need to solve a set of nonlinear matrix inequalities
(NLMIs). 1t is still not possible to fully resolve
these NLMIs yet. The H, control problem for
nonlinear MJSs with uncertain transition rates has
not been completely scrupulous [18]. It remains
important and hard.

This study is interested with the robust H,, con-
trol for MJLS with uncertain transition rates. First,
the robust H, performance criterion is found.
Therewith, the method for designing the H,, con-
troller based on the proposed performance crite-
rion is presented. We assume an improved bound-
ing for the uncertain terms instead of using the
traditional Young inequality. As an advantage, the
design method of obtained controller only needs to
solve a set of linear matrix inequalities (LMISs)
instead of NLMIs, we can easily solve by any LMI
solution. At last, a numerical example is given to
confirm the efficacy of the proposed methods.

Notations: Let R" is n-dimensional Euclid-
ean space and by B(R“,R’”) is space of all nxm
norm bounded linear matrices. For a matrix

Ac B(R”), AT is the transpose of A. A>0

(resp., A<0): will mean that the symmetric (resp.,
semi-negative definite) matrix A:B(R”) IS posi-
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tive semidefinite, and A>0 (resp., A<0): that is
positive definite (resp., negative definite) matrix.

| is the nxn identity matrix. trace{A} is trace

of a matrix. E(-) is the expectation operator.

Problem statement
Let the following MJLS, defined on a complete
probability space, are described as:

HO=AOO)O <BOONEO
y(®) =C(0(t))x(t)+ D(6(t))u(t)

where x(t)eR" is standing for the state variable

of the system, u(t)eR" is the control variable.

We assume the set S={1,2,...,N}, {6(t), t=0}

is a continuous-time Markov chain on the prob-
ability space, with transition rate matrix

M=(m;) . givenby[19]
P(O(¢+h)=j|0()=i)=

rh+o(n),i=j, @)
1+ m;h+o(h),i=j.

The  function satisfies h>0,

o(h)
m@:o and m; >0 (i,jeS,i#j), are the

transition rate from i to j, such that m; =—>"m;

j#i
for all ieS. For I=(x,) - the error between
them is Am; which take any value in interval
[—8ij,8ij].

The linear state-feedback control law is:
u(t)= K(6(t))x(t), (3)
where the controller gain matrices
K; =K (8(t)=i)eR™" to be design. The closed-
loop system is

K(1)=[A(0(1)) + B(6()) K (600)} (1
y(®) ={C(0(t))+D(6(t)) K (6(t))} x(1).

Now, we introduce the following definitions
[20].
Definition 1. The MJLS (1) is robustly stochas-

. . . 2
tically stable if lim E(x(t) ): 0.

Lemma 1. Let the Q;°(t) is solution of (1)
with initial condition Q,(0)=0aQ,;*(0) the solu-
tionof (1) is Q;(t)=aQ;*(t),vt>0

Lemma 2. If, at a certain time instant <,
Qj(t)<0;VjeS then Qj(t)<0;Vt>r ,jes.

Lemma 3. Let Q;*(t) and Q,°(t) be the solu-
tion of (1) the Q;*(0) and Q,”(0)is initial condi-
tion respectively. If Q;*(0)<Q,’(0),VjeS then
Q,*(t)<Q°(t),vjes.

Definition 2. The MJLS (1) is exponentially

mean square stable (EMS-stable) if there exist a
andp are positive real scalar such that

E(x(t)") <oe™.

Proposition 1. The MJLS of (1) is MS-stable if
the LMIs problems

Aij (t) + Qj (t) AjT + inijQi (t) (5)

are possible for a matrices {Qi Q. € S”*”}

Lemma 4. (Schur Complement) Given con-
stant matrices Q,,Q,,Q,, with leﬂf then

Q,Q7'Q, -, <0 ifand only if

{—Ql QT:I {—QZ Q }
*|1<0 or * |<0.

* QQ * _Ql

Robust Stochastic H., Performance Analysis

In this section, analysis performance the prob-
lem H,, of system is considered in terms of LMI,
and then dealt with in terms of the solvability of a
set of LMI with equality constraints

The following theorem [20] gives a robust sto-
chastic H,, criterion for MJLS of (1).

Theorem 1. Let the MJS (1) with uncertain
transition rates. The controller gains K,,ie S, the

closed-loop system (4) is robustly stochastically
stable if there exist matrices B >0,M; >0,
(i,jeS,i#j) suchthat for VieS the following
LMIs are feasible:

o, PB C
* 21 D |<0, (6)
* * —

P —q,l <0, @)
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P —P M, <0;(VjeS,i=j), (8)
N
where ©, = A'R+PA + > {&;(R-P)+2gM,},
i=1, ji
Ty =T — &

Robust Stochastic H.,, Controller Design

In this section, design problem the H,, control-
ler of system (1) is studied. The following theorem
has been proposed for designing the robust sto-
chastic H,, controller for system (1) in the form
(3).

Theorem 2. Let the MJLS (1). The closed-loop
system is robustly stochastically stable with dis-
turbance attenuation level vy if there are matrices

Q >0,N;20Y, (i,jeS,i#]j) and scalars
B,,ieS, F,ieS, is a known constant matrix
such that for Vie S the LMIs have solutions

® B QC +Y'Dl QF' E |
* D/ 0 0
* * -1 0 0 (<0,
* * * _Bil 0
i * * * * _Ai_
(9)
Bl Bl
<0, 10
R (10
—0O. —N. ]
{ Q'* ! _Q' }SO,VjeS,jii, (11)
j
where
=(AQ +BY,) +
+(AQ +BY,)+ Z {2e;N;; - m,Q.},
j=1, j=i
Ei :|:\/ﬁ7i1Qi \,&i(i—l)Qi \/&i(iﬂ)Qi \/ﬁQi]’
A; = diag{Q,, ....Q;,Quy,- Qi)
Furthermore, a controller gain is given by
K, =Y.Q™. (12)

Proof. From Theorem 1, we have that system
(4) with uncertain transition rates is robustly sto-
chastically stable if inequalities (6)-(8) holds with
disturbance attenuation level y. By applay the

Schur complement and noting (6)-(8) are equiva-
lent to the relations (13)—(15).

_(T)i PB, C/+K'Dl F' E |
* —yzl D\; 0 0
* * —1 0 0 [<0, (13
* * * —O(.-_l 0
i * * * * _/_\i_
—a,l |
[ . _P; } <0, (14)
_PI - Mlj
. L4 |20,VjeS,j#i (15)
i
where

E =Vl - Rl (R

A, = dia g{Pl

AR 1],

Pj,Pij,...,P’l}.

S

Consider Q. =P, for transformation congru-
ence to the mequallty in (13) by diag{Q,I,...,1}
and setting the change of variable

=QM;Q.Y,=K;Q.,and B, =a;',we can
erte the inequality in (9). Transformation the
congruence to the inequality in (14) by
diag{B;1,1}, we find the inequality in (10). and
transformation the congruence to the inequality in
(15) by diag{Q;,1}, we can get the inequality in
(11). In addition, we have Y, =K,Q,, the gain of

wanted controller is given by K, =Y,Q;*. This fin-
ished the proof.

Remark. From Theorem 2, the H., control
problem for MJLS with uncertain transition rates
can be solved in terms of the LMIs in (9)- (11).
The inequalities in (9)- (11) are not only linear
with the variables Q,,N,,Y;,B; but also linear with

regard to the scalar y*. Then, can be readily found

the robust H,, control with minimum guaranteed
cost by solving the convex optimization problem:

ij?

®, = min{ ¢=7°|Q >0,N; >0,Y,,B, Vi, j € S, subject to (9)-(11)} .
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Such that, the minimum cost is given by C22[0_4 0_2], D, = 0.76.

YOZ\/E-

Numerical example
We give an example of simulation to illustrate [—0.5 0.5

The uncertain transition rates given by:

the usefulness and of the theory developed in this = 03 -03

work. We find the design of a robust H,, controller

to the MJLS. Vi,jeS,j#l.
Switch between two dynamic subsystems with

Markov jump parameters S ={1, 2} :

}, | Ay | <0.8m;,

The robust H,, controller is designed such that
the closed-loop system is robustly stochastically
0.1769 0.7843 0.2995 stable with y over all the and uncertain transition
= {0.9266 0.1363}’ 1~ [0'4471} rates. We obtain minimum disturbance attenuation
level is y,=0.753 by Theorem 2 with the corre-

C,=[-03 0], D,=-05, sponding controller gain matrices
_[05478 0.1279] _ _[0.7417 K, =[-1.9328 -3.3166],
~|o.6160 0.9657] * |0.7957 ' K, =[-1.5559 -3.4950].

2
6(z)
1
0 50 100 150 200 250

s
Fig. 1. Switch between two dynamic subsystems with Markov jump
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O

0 50 100 150 200 250
t,s

Fig. 2. State of closed-loop MJLS with robust stabilizing control

X () 4

0 50 100 150 200 250
t,s

Fig. 3. State of closed-loop MJLS without stabilizing control

In Fig. 1, the effect of weak noise with an The state response of the resulting closed-loop
abrupt change in intensity leads to the emergence  system with uncertain switching probability is
of unstable modes and an increase in the "stopping  given in Fig. 2, which are switching two models

distance™. and x, = [1 —1]T, and the switching signal is
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shown in Fig. 1, obviously, the disturbance ob-
servers are effect to handle the random switching
disturbances. Based on the above analysis, it can
be asserted that the desired controller has good
robust performance. On Fig. 3 we seen that the
closed-loop system without stabilizing control is
unstable.

Conclusion

In this study, the problem H, control is dis-
cussed for MJSs with uncertain transition rates.
And the controller is designed such that the
closed-loop system is robustly stochastically stable
and guarantees a desired robust H,, performance
over the transition rates. The disturbances are con-
sidered as switching systems under Markov jump
parameters. The method for design the controller
is in linear matrix inequalities, which can be
solved as LMI problem. The numerical example
shows the effectiveness of the method.
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* k%

PobGacTHoe H,, YupaBJjieHnue JUHEHHBIMH CHCTEMAMHU C MAapKOBCKUMH CKaYKaMH U HEONMpPEACTCHHBIMH

BEPOATHOCTAMMU NMEPEKIIOYCHUSA

C. M. Xyccun, actmpant, oxI'TY umenn M. T. Kanamankosa, Vxesck, Poccns
B. I'. Cygusnos, noxTop TexHU4eckux Hayk, goneHt, Vk['TY umenn M.T. Kananiaukosa, Mxesck, Poccus

B cmamve uccreoyemcs npobnema pobacmuoeo ynpaenenus H,, ons cucmem ¢ Mapro8CcKuMu CKAuKamu u Heon-
PeOeNeHHbLMU MAmPUYam UHMEeHCUGHOCmell nepexooa. /s paccmampueaemoil cucmemvl npediazaemcs Ucnolb-
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308amb pobacmubil Kpumepuil kayecmea ynpaenenus H,.. Ha nepsom smane npogooumcs anaius Xapaxmepucmux
pobacmmnozo ynpasnenust H,, na ocnoge conpsaicennvbix TuHeiHbIX MAMPUYHbIX HEPABEHCME, 0djlee Peuldaemcs 3a0d-
4a bINYKAOU ONMUMUZAYUY C OSPAHUYEHUAMU, ONPEOCTICHHLIMU 6 MEPMUHAX PA3PEUUMOCTNU TUHEUHbIX MAmpUuy-
HbIX Hepasencms. Ha ocnose pewienust 3a0auu onmumuzayuu onpeoeieHo yciosue pobacmHuoll cmoxacmudeckou
YCMOuuueoCcmu s CUCmemM ¢ 00PAMHOU C653bi0, KOMOPOe MUHUMUSUPYEN YPOGEHb 3amyXanus 6o3mywenutl. Ha
OCHOBE paccmampugaemozo Kpumepusi CnpoeKmupo8an KOHMpOoJiep, KOMopblil 2apanmupyem pobacmuoe ynpag-
nenue H,, cucmemoil ¢ obpamnoil ces3vi0. Bee ycnogus gvipasicaromest 6 mepMunax MUHEHbIX MAMPUYHBIX HEPa-
BEHCMS, U, CIe00BAMENbHO, OHU MO2YN OblMb ONpedeieHbl peuamenem JTUHEUHbIX MampuyHblx Hepagerncms. [Ipeo-
cmasiien 4UcCleHHblll npumep peulenus 3a0ayqi, OeMOHCMpUpyowul 3¢Q@dexmusHoCms NpedsioHCEeHHO20 Memood
pobACMHO20 YRPAGIeHUsi CIOXACMUYECKOU CUCIEMbL C MAPKOGCKUMU CKAYKAM.

KiioueBble cJI0Ba. JUHEHHEBIE CHCTEMBI C MAapKOBCKUMHU CKa4YKaMH, pOGaCTHOC YIpaBJICHUC HOO, JIMHCHHBIE
MaTpHU4iHbIC HCPABECHCTBA, HEOTIPEACIICHHBIC MAPKOBCKHUC MTApaMETPhI.
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