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of Autonomous Vehicles Navigation
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The object of this paper is to create a system that can control any vehicle in any gaming environment to simu-
late, study, experiment and improve how self-driving vehicles operate. It is to be taken as the bases for future work
on autonomous vehicles with real hardware devices. The long-term goal is to eliminate human error. Perception,
localisation, planning and control subsystems were developed. LiDAR and RADAR sensors were used in addition to
a normal web Camera. After getting information from the perception module, the system will be able to localise
where the vehicle is, then the planning module is used to plan to which location the vehicle will move, using local-
isation module data to draw up the best path to use. After knowing the best path, the system will control the vehicle
to move autonomously without human help. As a controller a Proportional Integral Derivative PID controller was
used. Python programming language, computer vision, and machine learning were used in developing the system,
where the only hardware required is a computer with a GPU and powerful graphical card that can run a game
which has a vehicle, roads with lane lines and a map of the road. The developed system is intended to be a good tool

in conducting experiments for achieving reliable autonomous vehicle navigation.
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Introduction

Autonomous vehicles refers to driverless vehi-
cles or self-driving vehicles that can drive them-
selves from a starting point to a predetermined
destination in “autopilot” mode. This implies using
various in-vehicle technologies and sensors in the
absence of a human operator like adaptive cruise
control, active steering (steer by wire), anti-lock
braking systems (brake by wire), GPS navigation
technology, lasers and radar. There are 6 levels of
vehicle automation [1]. These are: Zero automa-
tion, Driver-assistance, Partial automation, Condi-
tional automation, High automation and Full
automation. Zero automation is the most common
and current model of vehicles we have on our
streets. No bells and whistles. Just a vehicle with
cruise control to help with long-distance driving
and minimize the risk of a speeding ticket from a
lead foot. Most vehicles today offer level 0
autonomous technology [2]. Driver-assistance is
level 1. It is an adaptive cruise control and lane-
keep assist system. Adaptive cruise control will
keep a safe-distance between you and the vehicle
ahead by use of radars and/or cameras. It will
automatically apply brakes when traffic slows, and
resume speed when traffic clears [3]. Lane keep
assist will help move the vehicle back into the lane
should you veer off a bit. Both these systems still
require the driver to be in control. Level 1 auton-
omy in most new model vehicles today. Partial

Automation level 2 is a level of automation that
can assist in controlling speed and steering. The
driver should always have hands on the steering
wheel and ready to take control. It helps maintain
the distance between the vehicle and the vehicle in
front by providing steering assistance. Conditional
Automation level 3, is where the blurring starts the
line between present technology and technology
that’s soon to come. Level 3 autonomous vehicles
are capable of driving themselves, but only under
ideal conditions and with limitations, such as lim-
ited-access divided highways at a particular speed.
Drivers are still required behind the wheel. High
Automation level 4, autonomous vehicles can
drive themselves without human interactions (be-
sides entering your destination) but will be re-
stricted to known use cases. Full Automation level
5 is the true driverless vehicle. Vehicles should be
able to monitor and manoeuvre through all road
conditions without human control. Many of the
technological components exist for an artificially
intelligent vehicle today but due to regulations and
legal battles, level 5 vehicles are still many years
away [4].

Development of the system

The system is to improve scientific research on
the concept of autonomous vehicles. This ap-
proach is effective as it is low cost, therefore if
applied well, anyone with a computer can conduct
experiments. We will be using gaming environ-
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ments with the capability to drive a vehicle. The
goal is to have the game vehicle drive itself as if in
real life. As with all automation, the main problem
faced in any sphere of study is “human error”.
Automation of systems tries to eliminate this prob-
lem. In autonomous vehicles, eliminating human
error reduces the number of accidents on the roads.
Autonomous vehicles will also reduce road traffic.
Traffic jams have been studied to mostly result
from human nature. That is, our reactions as peo-
ple are different. Therefore the lack of unanimity
of reaction when the traffic light turns green re-
sults in some drivers having to be stuck in the
middle of the road when the traffic lights turn red.
Therefore, the goal is to eliminate human error and
get to level 5 of autonomous vehicles [5]. The
ideal solution would be to build a vehicle to test it
on the road. But due to expenses involved, a better
solution would be to realise these concepts in a
gaming world that has already been created. Be-
cause the methods and concepts being tested are
the same, the game used does not matter [6]. The
system is a self-driving autonomous vehicle. The
main concepts to be reviewed are perception, lo-
calisation, planning and control. These in turn are
the four subsystems available. Due to the fact that

in a gaming environment it is impossible to evalu-
ate sensors, we will not delve into the topic of sen-
sors. Therefore this system will only be as com-
plex as possible in the gaming environment. The
current model use sensors such as the Light Detec-
tion and Ranging LiDAR, a normal Camera, the
Radio Detection and Ranging RADAR.

In order to have a fully functional system, the
system has four crucial systems as mentioned ear-
lier. These are perception, localisation, planning
and control. Perception is the first. The other mod-
ules totally depend on this module. The next mod-
ule will be localisation. The system will only be
able to localise after getting information from the
perception module. After being able to localise
where the vehicle is, the next step is to plan where
to go next. This is the planning module. It will use
the data from the Localisation module to draw up
the best path to use. After knowing the best path to
use, the system will have to control the vehicle
without anyone helping with the control. Fig. 1
will show the structural scheme of the system. The
system has 4 subsystems. Each subsystem has a
module or several ones. Fig. 2 will show how the
subsystems are connect to each other and their di-
rect dependencies.

AUTOMATED VEHICLE SYSTEM
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Fig. 1. Structural scheme
Puc. 1. CrpykrypHas cxema
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Visualisation tails vision of the system. This is how the com-

LIDAR refers to a light detection and ranging
device, which sends millions of light pulses per
sec in a well-designed pattern. With its rotational
axis, it is able to create a dynamic, three-
dimensional map of the environment. LIDAR is
currently the heart for object detection for most of
the existing autonomous vehicles. Perception en-

puter recognises the environment as we perceive
it. In reference we can call in computer vision. It
started in the 1950s. This saw the development
special technigques such as Canny-edge detection
which allows to distinguish the evolution of the
colour in an image as shown in Fig. 3.

Fig. 3. Canny-edge detection on a road
Puc. 3. Jlerextop KoHHU TpaHUI] Ha OpoTre

Perception provides autonomous vehicles with
crucial information on the driving environment, in-
cluding the free drivable areas and surrounding ob-
stacles’ locations, velocities, and even predictions of
their future states [7]. Based on the sensors used, the
environment perception task can be done by using
LIDARs, cameras, and/or a fusion between these two
kinds of devices. Some other traditional approaches
may also involve the use of long/short-range radars
and ultrasonic sensors. Perception solves problems
like steering Angle Computation, Lane Line Detec-
tion and Obstacle & Road Signs/Lights Detection
[8]. This subsystem is the first to be developed be-
cause all the other subsystems build on from what

was developed for perception. Perception encom-
passes methods used to be able to visualise data. The
given environment is a game. Therefore the devel-
oped system should be able to understand the envi-
ronment. Using computer vision is the fastest way of
doing this. Perception entails vision of the system.
This is how the computer recognises the environment
as we perceive it. In reference we can call in Com-
puter vision. The subsystem will be receiving a con-
stant stream of images. All processes will be happen-
ing in real time. Fig. 4 will show how to denoise the
image using what is called the canny edge detection.
Fig. 5 will show the finding of lane lines after remov-
ing everything else [9].
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Fig. 4. Canny edge detection of image
Puc. 4. UeTkoe pacrio3HaBaHHE KPaeB U300paxKeHIS

Fig. 5. Finding lanes

Puc. 5. Tlouck mojiocsl IBHKEHUS

Using mathematical models we are able to gen-
erate the lane line equation coefficients. First, sec-
ond, or third-order coefficient equations can be
used to approximate lane lines. First-order equa-
tions would simply be ax+b (a straight line) while
higher-dimensional ones will allow for curves.
Fig. 6 shows this phenomenon.

Ls=ax+Db, (1)
L.=ax’ +b*c, )

where L represents a straight line, and L. a curve
line.

Fig. 6. Lane detection calculation
Puc. 6. Pacuer 0OHapyKEHHMS TIOJIOCHI ABHKEHHS

Datasets do not always mention lane line coef-
ficients, and it is also necessary to detect the type
of line it is. The lanes can be dashed, solid, double
solid or double lanes, one dashed and one solid. It
is also important to know whether the line belongs
to the ego vehicle lane or to an adjacent one. A
single neural network may be really hard to train
and harder to generalize if there are multiple fea-
tures required. Segmentation is a popular approach
for solving this problem. The goal is to give a class

to each pixel of a photo. With this approach, each
lane corresponds to a class. The neural network
aims to generate an image with these colours only.
In this type of architecture, the neural network is
working in two parts; one - learns the features;
Two - part learns the output. Just like for bounding
box detection. The module sets the parameters that
will be used for the next subsystems. Data is input
in the form of video or a stream of images. After
performing some mathematical evaluations the
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desired result is output. That is the lane lines. The
inputs will be images per frame. The input images
will have all the noise removed. Then we identify
the edges. After that we mask the area we want to
focus on. That is when we can detect lane lines.
After that we draw the lane lines and they will be
the output on the inputted frame.

Localisation

The following are the different methods used
for localisation in  autonomous vehicles.
a) Odometry — It uses a starting position and a
wheel displacement calculation to estimate a posi-
tion at a time t. This technique is generally inaccu-
rate, leading to an accumulation of errors due to
measurement inaccuracies, wheel slip. b) Kalman
filter — defines the state of a vehicle. c) Particle
Filter — are a variant of the Bayesian filters. What
it does is that it compares the observations of our
sensors with the environmental map [10]. This al-
lows us to create particles around areas where the
observations are similar to the map. d) SLAM —
Simultaneous Localization And Mapping. This
technique uses the position of landmarks to esti-
mate the vehicle’s position. The input data will be
masked images containing the map. These will
have been output from the “Perception Subsys-
tem”. Output data will square line on the map and
realising where the vehicle is located. This is the
actualisation of exactly where the vehicle is posi-
tioned in the environment. It is also the implemen-
tation of algorithms to estimate where the vehicle
is with an error of approximately 10 cm. In this
solution, since our environment is a gaming world,
there is no GPS system as we might know it.
However, there will be a map provided. Games
like Asphalt, Need for Speed, GTA and Euro
Trucks possess a map on the bottom left corner.
The system perception is set for this. The input
imaged will have been masked for the map area
that is needed in this subsystem. Using computer
vision, the system will look where the vehicle is
located in the map.

Path Planning

Path planning is about implementing the brain
of an autonomous vehicle. In the gaming world,
the map and the road lane will be used for path
planning. This process involves Prediction, Deci-
sion making and Trajectory generation. Prediction
is about trying to make an informed decision of
what the objects in the given environment will do
in the next few seconds. For handling Prediction,
there are 2 main approaches, The Model Based
approach and Data Driven approach. In the Model
Based approach. All possible trajectories for situa-
tion such as highway insertion or intersection, a

model can be drawn up. Options for the vehicle
entering the highway are: 1) the vehicle will keep
its original lane by speeding up, slowing down or
staying at a constant speed; 2) The vehicle may
change lanes. Data Driven (machine learning) ap-
proach/method is very different. Two stages are
defined, a training phase and a prediction phase.
The training phase requires collecting large data
on the history of vehicles and learning from this
data. Unsupervised learning is preferable with this
type of data. We use clustering algorithms to de-
fine vehicle trajectories. The Frenet coordinates
contain two axes, an s axis indicating the advance
relative to the track and a d axis indicating the dis-
tance to the centre of the lane. This marker is the
base to estimate if the trajectory deviates from the
centre of the lane. Fig. 7 show a comparison of
Cartesian plan against the Frenet plane.

Frenet (s,d)

Fig. 7. The Frenet vs the Cartesian plane
Puc. 7. dpeHeT MpoTHB JIEKAPTOBON TNIOCKOCTH

Generation of a trajectory requires passing
through waypoints created by a fifth level poly-
nomial. The waypoints contain 3 dimensions
known as S, D, and T. These are longitude dis-
tance, lateral distance and time passed at any of
the points respectively. A curve that goes through
all these points is called a trajectory. These points
are positioned in space and time. They tell when to
move to a specific (x, y) position and how fast.
When taking a decision to overtake a vehicle, the
algorithm generates several trajectories for the re-
quired decision. It chooses the best trajectory ac-
cording to the criteria of feasibility, safety, legal-
ity, efficiency and comfort. In the case of overtak-
ing for example, the algorithm chooses the best
option on the given choices. In an environment
called non-holonomic, we are able to make control
calculations. In this environment, for instance, the
vehicle wheels cannot turn 90°, they are actually in
between -30° and 30°. Taking this into account
allows for a more realistic trajectory. Acceleration
can be defined between -1 as braking and 1 as
maximum achievable acceleration. There are 2
implementable models, Kinematic and Dynamic.
A kinematic model means that our vehicle realizes
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the implementation of mathematical formulas to
define the movement and trajectory of the vehicle.
The Dynamic model considers the fundamental
principles of dynamics. Thus the forces applied to
the wvehicle like air resistance, vehicle weight,
gravity, the contact of the wheels on the ground.

The centrifugal is not taken into account in a Ki-
nematic model. It is a force that can cause a vehi-
cle to leave its trajectory in a bend. Fig. 8 and Fig.
9 show the Kinetic and Dynamic models respec-
tively.

Fig. 8. Kinematic motion model of a vehicle
Puc. 8. Kunematnueckas MOACJIb IBUXCHUS
TPpaHCIIOPTHOI'O CPEACTBA

The input data will be the map screen section.
The output data will be the map section with out-
lined planned trajectory. After getting an estimate
of the future prediction, a decision can be made.
To make a decision, several criteria is used. The
most common are safety, feasibility, efficiency
and legality. Finite state machines are a very popu-
lar method known for decision making. According
to the available situations, all possible states of the
vehicle are to be defined. Using cost functions, a
choice of the machine state can be made. For each
possible scenario, we calculate independent costs
and add them up. The lowest cost scenario wins.
To calculate a dangerous manoeuvre:

CT = 5CF + 4C5 + 3CL + 2CC + CSpeeda (3)

where Cs is the total cost, Ck is the feasibility cost,
Cs is the security cost, C is the legality cost, Cc
is the comfort cost, Cspecq IS the speed cost.

We make use of a different coordinate system
than the Cartesian coordinate system. This is be-
cause the Cartesian coordinate system takes into
account the dimension (X, y) but does not make
sense if we want to find one’s bearings in relation
to the road. This is where the trajectory is gener-
ated.

Control

To make vehicles autonomous, the control
stage is very important and crucial. Control relies
on all the previous modules: perception, localiza-
tion and planning, which must be developed per-
fectly. Controllers are unique to each vehicle
which makes it difficult to export them. An
autonomous vehicle uses the perception module to

Fig. 9. Dynamic motion model of a vehicle
Puc. 9. Jlunamudeckasi MOJIENb JIBHOKCHUS
TPAHCIIOPTHOTO CPEIICTBA

grasp its environment, the localization module to
understand its position during this environment
and also the planning module to form decisions
and generate trajectories. The control module is
now answerable for moving the vehicle by gener-
ating an angle for the hand wheel and an accelera-
tion. Taking into consideration the road and there-
fore the vehicle, and integrating physics, we de-
velop algorithms to follow the waypoints
efficiently. This moves the vehicle by operating
the brake, acceleration and wheel. An impact algo-
rithm is named a controller. The input data will be
a combination of the lane lines and the map trajec-
tories. The output data will be keyboard controls
relating to the projected trajectory and lane lines.
As a controller a Proportional Integral Derivative
PID controller was used [11]. It is an algorithm
that calculates values like a steering wheel angle
from an error calculation. The difference between
the intended trajectory and the one adopted. It is
the simplest and most common controller at the
moment. It can be implemented quickly and can
operate in simple situations. In the case of stand-
alone vehicles, a PID controller can calculate the
angle of steering and another to calculate the ac-
celeration. It is impossible to model the physics of
the vehicle. When driving, it is natural to adjust
manoeuvre according to the size, mass and dynam-
ics of the vehicle. A PID controller cannot do this.
The PID controller has proportional, integral and
derivative elements as in its name [12]. Fig. 10
shows how PID controllers work.
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Proportional refers to a correction to the steer-
ing wheel proportional to the error. If too far from
the goal, turn the wheel in the other direction. The
main disadvantage of a single P controller is that it
causes a constant oscillation. This oscillation is
more or less important depending on the frequency
at which the algorithm calculates the error. The
coefficient K, indicates the degree of the desired
oscillation. The proportional element formula is
depicted in equation 4:

P=Kpe(), 4)

Derivative - this for suppressing the oscillation
effect by adding a term that dampens the formula.
It is the change of error. It does this by decreasing
and reducing slightly the angle it adopts when ap-
proaching a smooth path. Fig. 13 shows how the D
controller is represented on a graph:

_ o Je(t)
D= Ky =) (5)

Integral - is used to correct the mechancal error
that causes the wheel to turn a lot depending on
the vehicle’s stability. This is done by adding a
last term to the sum of cumulative errors. There-
fore, it is a sum of 3 components that allow the
vehicle to follow effectively, a trajectory in real
time. To optimize driving, K,, K;, Ky coefficients
are required. Figure 5.4 will show the combination
of all these controllers and the optimum PID we
need.

LU0

t
u(t) = K e(t) + K, je(t)dt +K,

0
The controller gets instructions for the vehicle
like the wheel angle or acceleration level taking
into consideration the particular constraints and
also the trajectory generated. In the world of robot-

ics, there are a large number of controllers, de-
pending on the type of robot needed to be moved.
The environment can also play a role.

System algorithms

Figures 11-15 show the algorithms for each
subsystem. Figure 11 is the algorithm of the whole
system. From Fig. 12 to Fig. 15, these are the algo-
rithms of each subsystem.
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Fig. 11. Diagram of how system works
Puc. 11. Cxema paboThI CHCTEMEI
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Experiments and results

Each subsystem had an experiment conducted,
therefore five experiments were carried out. For
visualisation, we were trying to achieve computer
perception [13]. If the output is simply a black im-
age with colours, it is then very simple to use ma-
chine learning and linear regression to find the
lane lines on the same colour points [14]. The in-
put data was the video of the gaming screen avail-
able, e.g., Need for Speed, or The Run. The output
information will be: a) Road lane lines detected, b)
Map detected. Figures 16-18 show 3 different
camera views of lane detection. Fig. 19 shows the
second result of the experiment. It shows the lanes
as well as the map identified. This is necessary in
order to have inputs for the localisation module.

Fig. 16. Camera view 1
Puc. 16. Bun xamepsr 1

Fig. 17. Camera view 2
Puc. 17. Bun xameps 2

Fig. 18. Camera view 3
Puc. 18. Bug xamepsi 3

Fig. 19. Map recognized
Puc. 19. Onpenenenne KapTel

After finding the map, the only step left to
achieve localisation is pin pointing the exact loca-
tion of the vehicle. Fig. 20 shows the actualisation
of exactly where the vehicle is positioned in the
environment.

Fig. 20. Localised Vehicle
Puc. 20. Jloxanuszamumst aBTOMOOWIIS

Having localized the vehicle, the system had to
plan the path of the vehicle. Fig. 21 and Fig. 22
will show the map section with outlined planned
trajectory.

Fig. 21. Camera view
Puc. 21. Bun kamepsl

Fig. 22. Map view showing trajectory generated
Puc. 22. Kapra, noka3biBaroiias CreHepupOBaHHYIO
TPaeKTOPHUIO

Conclusion

As a result of the work, the analysis of the subject
area was carried out. In the process of completing the
final qualifying work the set goals and objectives
were fully met. The system comprises of four sub-
systems. All four subsystems were completed. The
subsystems are development of the perception sub-
system, the localisation subsystem, the path planning
subsystem and the control subsystem. In particular,
there was developed a software product that simpli-
fies automation but only limited to gaming environ-
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ments. The main advantage is that the user does not
have to develop a game to carry out the automation
system experiments. The system is free and cheaper
and the only required is a computer capable of play-
ing a computer game. Because the system is free, a
lot of researchers can use it and work on autonomous
projects and improve on them before acquiring ex-
pensive hardware.
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Hannas cmamvs nocesujeHa ONUCAHUIO CUcCmeMbl Ol YNpasieHus mpaHCHOPMHLIMU CPeOCMEAMU 6 USposoll
cpede, npu 3MoM yenvio padbomul AGIAEMC MOOETUPOSAHUE U IKCHEPUMEHMATIbHOE UCCIe008aHe padbombl becnu-
JIOMHBIX MPAHCHOPMHBIX cpeOcms. JJone0cpouHOll Yeavlo OAHHO20 UCCTe008AHUA ABNAEMCS UCKTIOYeHUe Yenosede-
ckozo paxmopa. Paspabomarnsl noocucmemvl 80CHpUAMUsL, TOKATUZAYUYU, NIAHUPOBAHUS U YnpaeieHus. B dononne-
Hue K 00blyHOU 8eb-kamepe 8 pabome Oviau ucnoavsosausvi oamyuxku LiDAR u RADAR. Ilocre nonyuenus ungop-
Mayuy om MOOYNA SOCHPUAMUA Cucmema JOKAIUu3yem HNO3UYU MPAHCNOPMHO20 cpedcmea, oOanee O
COCMABNeHUs ONMUMATLHO2O NYMU UCNOIb3YEMCs MOOYIb NIAHUPOSAHUA, KOMOPbIl onpedensiem, Kyda 6ydem ne-
pemewamovcs mpaHcnopmuoe cpeocmeo, UCHOIb3yA OaHHble MOOYaA Aokaiuzayuu. [locie onpedenenus onmumans-
HO20 Nymu cucmema oCywjecmeniem ynpasienue mpancnopmuslM cpeocmeoM, Makum oopazom, yumoobwvl OHo dsuea-
JI0Cb A8MOHOMHO, De3 noMowu yenogexa. B kauecmse pezynamopa ucnonb308aacs npOnopyYuoHaIbHO-UHMEZPAIbHO-
npoussoonviti [IH/]-peeynamop. Ilpu paspadbomke cucmemvl UCHONIb308ANUCH. A3bIK npocpammuposanus Python,
KOMNbIOMepHoe 3peHue u mawiunnoe obyuenue. [[na obecnevenus pabomvl cucmemvl HeoOXOOUM KOMNbIOMeEpP ¢
2paguueckum npoyeccopom u MowHoU epaduyeckol Kapmotl, KOMmopas Modcem 3anycKams uspy ¢ agmomoouiem,
dopoeamu ¢ nonocamu 0sudxicenus u xkapmou dopoeu. Ilpu coomeemcemayouell dopabomke, paspabomaHuds Cuc-
mema Modjcem Cmanms XOpOuiuM UHCTPYMEHMOM NPU NPOSeOeHUU SKCHEPUMEHMO8 N0 OOCHMUNCEHUIO HAOEHCHO
ABMOHOMHOU HABULAYUU MPAHCNOPIMHO20 CPEOCMBa, MAKN’Ce Modcem Obinb UCNOAb308AHA 8 Kauecmee 6a3vl Ol
pabomvl HAO ABMOHOMHBIMU MPAHCHOPMHBIMU CPEOCMEAMU C PeATbHLIMU ANNAPATNHBIMU YCIPOUCMEAMU.
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