42 ISSN 1813-7911. UHTemIeKkTyanbHble CHCTEMBI B Tpon3BoACTBe. 2022. Tom 20, Ne 3

VK 004.942(045)
DOIL: 10.22213/2410-9304-2022-3-42-54

Modeling and simulation of two ambidextrous anthropomorphic manipulators
to perform cooperative tasks

G. Ch. Uboh, crynent, Kalashnikov Izhevsk State Technical University
M. A. Al Akkad, xkaununat Texandyeckux Hayk, Kalashnikov Izhevsk State Technical University

This paper is focusing on the development of a robotic arm using 3D modeling and simulation. The software used
is Blender, which is a 3D modeling and simulation software that also supports programming language python as the
scripting language. Blender was chosen over Maya because it is a free software suitable for students to develop their
projects, and share the same features, more accessible, and the design is more realistic. The robotic arm was designed
after studying the human arm and hand. The kinematics of the robotic arm were derived. The simulation shows the
movement of rigged objects, e.g., an arm controlling a gun, and bullets projecting from the gun, and it was done using
key frame animation and game engine simulation. Modeling and simulation of two robotic arms and hands, shooting
with an AK-47 rifle at a bullseye, were done and completed using python in Blender. This work is intended to be inte-
grated into a First-Person Shooter FPS game, which can be used to train biathlon sportsmen and army soldiers for
precise shooting. Forward and inverse kinematics are implemented for the rig to move without breaking and deform-
ing, then the bones and mesh together are combined as one unit, then the joined mesh is put to a desired position of
a shooting position, then a rifle is added, then the bullets are simulated falling on ground when the bullets hits the
target. Then finally the whole file is exported.

Keywords: Blender, Robotic arms, Rendering, Modeling and Simulation, Inverse kinematics, Rigging, Animation.

Introduction

In the realm of modeling and simulation, whatever
is imagined can be created, what doesn't get exist can
be seen, where time and space, are under people’s
command. A world where anything can be done and
there are no mistakes or wrong answers with the only
limits are those of the imagination. Modeling and
simulation, are ways of understanding the world
around us through creativity and imagination.

There are three main types of models physical,
mathematical, and process. A physical model is one
whose physical characteristics resemble those of the
item being modeled, in other words it looks, or feels
like the real thing, it could be a tweet plane, a statue,
or the blueprints for a house. A mathematical model
is one that uses mathematical symbols and relation-
ships to describe something, evolved on graphs and
math class, but it could also be a chemical formula or
baseball statistics. The process model describes the
steps we need to follow to get something done this
could be as simple as to do list, or in computer,
a flow chart. With these three types of models basi-
cally anything can be modeled, equipment, systems,
environments, people even behaviors. In 3D model-
ing, different spheres, and things can be made, and
then just building upon that, using a program like
Maya, or Blender. A rig man can be created and lip
sync and facial expressions can be practiced. Enthu-
siasm is all is needed to learn modeling and simula-
tion, it's fun and interactive and it actually opens up

a lot of fields for job opportunities. Models can be
used in real world applications, like in 3D cartoon
production industry, and how to create characters
and put everything together. Modeling and simula-
tion, can be used by anybody, no matter what their
skills are, there's a place for them.

Just like there are three main types of models,
there are three types of simulations, live, virtual,
and constructive. A life simulation is one that in-
volves real people operating real systems like prac-
ticing golf, or soldiers simulating military maneu-
vers. A virtual simulation is where real people up-
grades simulated systems, like flight simulators, or
driving simulators. Constructive simulation is
where simulated people operate simulated pro-
grams, people provide the input situation it could be
traffic, weather, or explosion, and the simulation
tells them what might happen. A serious game is
the serious application of video game technology in
simulation, it is created for real world applications,
like a medical training simulation, where doctors
are trained in a virtual environment to diagnose pa-
tients, and perform surgeries. In a constructive
simulation, an incident commander is used for
training individuals to put together an emergency
situation incident, it is a virtual world with virtual
people, where by providing input to simulation,
e.g., an explosion, it allows police, firefighters, and
other emergency personnel to learn how to work
together more effectively.

© Uboh G. Ch., Al Akkad M. A., 2022

HNudopmaTuka, BBIYHCINTETBHAS TEXHUKA H YIPaBJIeHHe 43

All simulations, live, virtual, and constructive
are great ways for people to learn how to handle
situations and become better decision makers. Let-
ting people make mistakes in a virtual simulation
allows them to make better decisions when they are
going to the real world. Simulations also allow us
to test ideas before committing to them, making
models and then seeing how they work and simula-
tions allow us to make improvements more quickly
more safely and for less money.

Modeling and simulation are used everywhere
you look from movies to games to building cars,
flying airplanes, the possibilities are endless, people
can make their own models and simulate them to do
whatever they want, the world of modeling and
simulation is wide open, so no matter what the in-
terests of a person are, there is a place for him [1].

Simulation is very essential in modeling of ro-
botics. Engineers can keep working on simulations
over and over before creating the hardware of the
simulated robot [2]. Focusing on the movement of a
robotic arm can be difficult during simulation, e.g.,
picking up an orange and peeling it [3], or shooting
with an AK-47 rifle, the problems stem from the
degree of total movement and freedom of the arm
needed for the simulation to be perfect and ready
for real life modeling and creation [4].

This paper will explain and show the movement
of a human-like robotic arm and its kinematics us-
ing Blender [5]. To start the modeling process of
the hand and the arm, a cube is first created, and
several steps will be taken to make hand and the
arm look realistic enough [6]. The bones will be
created, forward and inverse kinematics will be im-
plemented for the rig to move without breaking and
deforming, then the bones and mesh together will
be weight painted to make them one unit so they
can function together as one, then the joined mesh
will be put to a desired position of a shooting posi-
tion, then a rifle will be added, then the bullets will
be simulated coming out from the gun, and a reload
simulation, and cans falling on ground when the
bullets hits the target [7]. Then everything will be
animated together to make them function as one,
and finally export the whole file.

Kinematics of the human arm

The human arm has 7 DOF, including the shoul-
der, where each joint has 1 DOF. The kinematic of
the human arm are studied and implemented to pre-
dict a realistic motion of the robotic arm [8]. The
wrist bone consists of 3 DOF, the shoulder joint
consists of 3 DOF, and the elbow consists of just 1
DOF [9]. The human hand works with the combina-
tion of rotations, movements, inner rotation, the
placement of the shoulder, and movement of the

elbow joint [10]. The kinematic movement of an
anthropomorphic manipulator is a complicated sys-
tem, in particular the shoulder [11]. The kinematic
frames of the arm are shown in Fig. 1.

There are two spherical joints in the arm, the
wrist, and the shoulder, and, a revolute joint, the el-
bow [12]. By including a rigid coordinate frame {0}
placed at the start of the shoulder and a coordinate
frame {i}(i = 1.7) placed at every joint, 4; is defined
as the 4x4 homogeneous transformation from frame
(7-1) to frame {i} where the joint variable is ;.

y A *‘T‘ Shoulder
oar |
A1
x g2 & i
z | L1
|
04 1
I W
Y 0 Elbow
Y
l | L2
z |
I
B85 !
r ¥
Wrist

"%

o7
xﬁﬁ(‘:l'/
i

Fig. 1. Simple Diagram of the Human Arm

Puc. 1. TIpoctas cxema 4e0BeUECKON pyKH

A; is described as follows:

¢ -5 00
s, ¢ 00
A=R(0)=]" " ;
= R(6) 0 1 0
L 0 0 1
1 0 0 0
0 — 0
AZZRX(GZ)Z 0 C2 S2)
s, ¢ 0
100 0 1
¢ —s; 0 0
s 0 0
A, =R (0,)7(0,0,L)=|> ;
3 (3) (1) 0 1 Ll
0 0 0 1
¢ 0 s, s,L,
0 1 0 0
4,=R,(0,)T(0,0,L,)= o 0 e el
4 4 410
0 0 O 1

44 ISSN 1813-7911. UHTemIeKkTyanbHble CHCTEMBI B Tpon3BoACTBe. 2022. Tom 20, Ne 3

cc 0 s, 0
A =R (0,)= 0 1 0 0]
I e (A O
10 0 0 1)
1 0 0 O
0 -5, 0
A6=Rx(96)= 0 o § ;
s ¢ 0
00 0 1}
c, —=s;, 0 0
s; ¢ 00
4,=R (0,)=|"" 7 1
7 z(7) O O 1 O ()
10 0 0 1]

¢; and s; indicate cos 0, and sin 6;and L; and L,
are calculated as constants portraying the length of
the upper arm and forearm. The wrist is placed in
a fixed position and the wrist frame is related to the
shoulder frame, the chosen inverse kinematics is to
determine a set of angles 0y, ..., 0, that fulfil the
following equation:

Ay Ay A3 Ay As As A7 = Awrist. (2)

Then A, Will be as follows:

8 &2 & 8u
8y 8»n &3 8u

831 83 81 8u
0 0 0 1

Awr‘ist = (3)

The given vector p = [g,,,82,8: 4]T is placed in
the given position of the wrist, being measured by
the placed coordinate system. If p is placed, the an-
gle of the elbow 0, is determined through the given
distance of the placed wrist from the shoulder as:

LP +12* -|P|
0, = mtarccos 4)
20112

Even though there are two different solutions for
0,, just one is realistically realizable due to joint

limits. Equation 1 is under constrained as 4,
specifies 6 rather than 7 independent quantities, so
there are an infinite number of values for
0,.0,,0,,0,,0,,0, and 0, that satisfy it. To obtain
a finite set of solutions, an additional constraint
must be provided [13].

Modeling the arm and hand in blender

Inverse kinematics IK helps to make moving
limbs and other joints easy to animate. Forward
kinematics FK is just the way the parent bones af-

fect the movement of the child bones, i.e., when the
bones change, it only transforms the bones that are
down the chain, where moving the child will not
affect the parent [14]. Inverse kinematics, gives
access for the change of a given bone close to the
last point of a chain to regulate bones that are high
up the chain of bones, basically when the child
bone has influence on a parent bone [15]. For this
the auto IK option has to be chosen by opening the
right hand side menu by clicking N, then tools,
which is a simple checkbox that helps to pose bones
very quickly. Implementing this, bones can be
moved easily at the bottom of the chain to navigate
the transformation of the whole chain. This comes
to use when modelling hands in real life when peo-
ple raise their hands, they move their upper arm and
extend their forearm quickly allowing their hand to
travel upwards, then order their hands to move up-
wards and their upper arm and forearm act accord-
ingly to accomplish this movement. To apply IK to
rigs, the auto IK feature is used for quick posing,
but it doesn't give full control over the IK and it
doesn't work for animation, so instead the IK bone
constraint is used to set it up properly. The first step
is choosing pose mode, select the forearm bone,
and add the inverse kinematics bone constraint
from the bone constraints tab indicated by the
wrapped blue bone icon in the properties’ editor,
from there it is noticed that few input fields have be
to filled for the object being targeted, this will be
the armature itself. To target a specific bone within
the armature, from choosing/selecting armature, the
bone is selected. This works in a similar way to the
track and stretch to constraint where the target bone
is, where the active bone to point to, so in this case
the hand bone will be chosen, however when the
hand bone is selected to be moved, it doesn't actu-
ally seem to do anything, in fact it's not translating
at all as it's still joined to the forearm bone, edit
mode is selected and hand bone is disconnected
from the forearm bone but kept parented. Now the
hand bone can be translated and it influences the
forearm bone but it also influences the entire rig,
which is not what is wanted. The arm is desired to
bend so IK bone constraint is selected and the chain
line option, the default is zero and this simply goes
up the entire bone chain, the active bone is parented
to, so it goes all the way down to the bottom of the
spine, this is indicated by a yellow dotted line. By
changing the chain length value the yellow dotted
line will show, how far up the chain, the inverse
kinematics will take effect. It is better seen in wire-
frame mode. The only bones that have to influence
by the IK constraint are the forearm and upper arm
bones so a chain length of two is required. When

HNudopmaTuka, BHIYHCIUTETLHASI TEXHHKA H YIPaBJIeHHe 45

the hand bone is moved, it correctly influences only
the forearm and upper arm, but it is not wanted to
be freaking out, it doesn't seem like it's very ani-
matable or stable. The forearm is pointing to the
hand but the hand is parented to the forearm, i.e.,
that when the hand moves the forearm will try to
point to the hand. If the forearm moves to the se-
lected hand, the hand will have to move because it's
being parented to the forearm. Moving the hand
further will also move the forearm further to point
to the hand which will move the hand further be-
cause it's parented which will move the forearm to
point to the hand, this is called a cyclic dependency
and it is not desirable. So the hand should be unpar-
ented entirely so that we can move our hand inde-
pendently from our forearm. Now the movement of
how the hand bends the elbow is very realistic, the
only problem is that the hand is no longer con-
nected to the forearm. The hand can be now
stretched out away from the forearm, which isn't
ideal, so to work this around, edit mode is selected,
the hand is reparented to the forearm, then the hand
bone is duplicated and the duplicate is unparented.
An independent controller bone appears that it can
be pointed to, instead, let's call this bone hand IK.

Fig. 2. Wrist Bone Emulating the Human Wrist Movement

Puc. 2. UMuranus IBMKEHNUS 3aISICTh YEJIOBEKA

» Workspace

Fig. 3. Auto Rig
Puc. 3. ABTorig

Going back into pose mode, we can select our
forearm, go into the bone constraints tab, and
change the bone target from hand to hand IK. Now
as we move our hand IK bone, the forearm and
upper arm deform nicely and we can move this

hand. The controller is taken out without stretching
the hand itself, however, now to rotate the hand
bone itself we have to switch between animating
the hand IK and the original hand bone, which is
a bit tedious, so a simple copy rotation constraint is
added for the original hand deformation bone to
follow the hand. The hand eye is going to make the
bone a bit bigger in edit mode so it's easier to dif-
ferentiate from the original hand bone. Now we
have a nice basic eye care, except that sometimes
when we move the hand bone around, the elbow
bends the wrong way, which is not desired. There is
still one more input field left in the inverse kine-
matics constraint. The pool target input field will be
helpful for solving the issue of joints bending the
wrong way during inverse kinematics. A poll target
is simply a reference object or bone that the elbow
joint or IK joint will try to point to as the bones
bend, for this we can simply create a new bone by
duplicating the hand, keep on moving it behind the
elbow. It will be rotated so that it points away, but
it doesn't matter because only its location is actually
referenced, and renamed to elbow target. Back
again into the IK constraint settings and input the
armature again for the object field for the bone in-
put. The elbow target is selected and when the
hand is moved, the elbow never bends in the wrong
direction anymore, except that's because the elbow
doesn't bend at all, this is because it was created too
straight and it doesn't know which direction to start
bending. So back into edit mode, the elbow joint is
to be dragged slightly backwards. The elbow bends
but still in the wrong direction, because one more
value should be defined in the IK constraint. The
elbow is kept bent and then the forearm bone is se-
lected again, and in the IK constraint this pull angle
value is clicked and dragged until it points to the
pole target correctly. Now the inverse kinematics
rig in blender is working.

As shown in Fig. 2 the wrist bone is emulating
the human wrist movement shown on axes x and y.
Fig. 3 shows a simple checkbox. Blender doesn’t
permanently change the armature at all but rather
helps when bones posing is desired. Enabling these
bones, they can be easily moved at the end of chains
to influence the transformation of the entire chain
itself. A 3D model consists of faces, edges and verti-
ces. When two vertices are put together the edge is
created and when more than two vertices are put to-
gether and cover the space between edges then the
creation of a face is made. The face is known as
a polygon and a vertex is known as a point in space.

Fig. 4 shows that the faces are subdivided into:
Quads, Triangles, and Polygons. When it comes to
the modelling of a 3D object or mesh it is advisable

46 ISSN 1813-7911. UHTemIeKkTyanbHble CHCTEMBI B Tpon3BoACTBe. 2022. Tom 20, Ne 3

to use the quad which is the 4 side faces as it can be
smoothed, and if subdivisions are focused on, the
model might break or deform. When it comes to
utilizing the polygons and triangles, problems may
arise, because it can cause pinches in the object and
that’s not desired, although such method is possible
but is not advisable. When trying to start modelling,
edit mode has to be selected first or pressing tab on
the keyboard, then faces, edges and vertices can be
selected, as seen in Fig. 5, where in blender the
edges, faces and vertex are the tools needed espe-
cially when it comes to extruding. When the face is
picked up, it helps extrude the whole face, which
means it can drag the main part in a box or a wider
part of the box, e.g., it will be like the front part of a
box being dragged to make it bigger and also it can
be deleted, when the edge is chosen, it helps by se-
lecting just the edges of an object or mesh and the
same logic goes to the vertex, a dot to be specified,
and it’s also possible to select a lot of it by hitting
Ctrl B or C. All this can only be done in the edit
mode. Fig. 6 shows the process of the whole work
from creating the mesh-rigging.

Il Vertex
I Edge
Face

Fig. 4. Vertex, Edges & Faces
Puc. 4. BepmnHa, pebpa u rpanu

Fig. 5. Accessing the Tools

Puc. 5. JlocTyn K HHCTpyMEHTaM

A basic hand shape can be created just from the
cube shape:

e Make the cube smaller, and move one of the
edges to the center of the palm of the hand. The
base of the thumb will be what is left from the di-
agonal face.

¢ Add two loop cuts, one close to the wrist and
the other one close to the fingers.

¢ Choose the base of what you want the thumb
to be and extrude it to create the thumb.

e Smooth the whole mesh by selecting the whole
hand and accessing the smoothing tool to create the
geometry.

e Remove the top faces by pressing Ctrl B. and
selecting the base and delete it.

Select 3D cube

\4

Sculpt cube to 3D hand

Correct?

Yes |4¢

y

Create joints/bones
Using Python

No

Ye

Weighing

v

Save file

Fig. 6. Activity Diagram

Puc. 6. luarpamma nesiTeIbHOCTH

Fig. 8 and Fig. 9 show the steps used in the crea-
tion of the hand and fingers.

The bones are essential when it comes to the
development of any object because it helps with the
movement and motion of the object, technically
without the bones the human body is useless because
that is what helps us move. Even when smile the
bones are needed for it, when walking, talking,
swimming, running, jumping, etc. Bones are needed
to perform physical tasks. Bone creation, extruding,
bones duplication, rigging, contraints, and weighing,
using python API will be discussed.

Before starting any project, we must first start
by modifying a cube in blender. Fig. 7 shows the
3D cube.

Fig. 7. The 3D Cube
Puc. 7. 3D-xy6

HNudopmaTuka, BBIYHCINTETBHAS TEXHUKA H YIPaBJIeHHe

47

Fig. 8. Steps for Modelling a Hand

Puc. 8. Dranpl MogeTHpOBaHUS PyKH

Fig. 9. Finger Modelling

Puc. 9. MogenupoBaHre TaIbIIEB

Bone creation: The blender armature has nice
features but it is almost useless alone and it doesn’t
render. To create it automatically, edit mode has to

be selected, and Shift A is clicked, where a menue
shows up like in Fig. 10 for automatic armarture
creation.

Fig. 10. Shift+A to do it Automatically
Puc. 10. Oneparus Shift+A

Fig. 11. Armature/Bones using Python

Puc. 11. Apmarypa/ckeneT ¢ ucrnonb3oBanuem Python

Python API for armarture creation

ebs =
eb =
eb.head =
deleted
eb.tail =

obArm.data.edit bones
ebs.new ("BoneName")

(0, 1, 1)
(0,

1, 2)

bpy.ops.object.mode set (mode='EDIT',
obArm = bpy.context.active object #get the armature object

#if the head and tail are the same,

#upon returning to object mode

toggle=False)

the bone is

Fig. 11 shows the bones in blender which con-
sist of the head and tail, i.e., top and bottom.

Extruding: Blender knows the difference be-
tween main and ordinary bones by the extrusion
process. When creating a project and starting the
process of rigging, the first step has to be adding a
bone and extruding the bone until the full set of
bones are complete, e.g., when creating the arm, the
first step is adding an armature then extruding that
armature.

Extruding is just the process of creating or better
making a copy from an original bone as shown in
Fig. 12, this helps when creating an armature from
scratch. It is not advisable to create a bone over and
over again because then the rig and its IK can’t be
implemented.

Fig. 12. Extruded Bones

Puc. 12. BerTsHyTHIH CKETeT

Fig. 13. Duplicated Bones

Puc. 13. IyOnupoBaHHBIE KOCTH

48 ISSN 1813-7911. UHTemIeKkTyanbHble CHCTEMBI B Tpon3BoACTBe. 2022. Tom 20, Ne 3

Python API for Extruding

e={"value":(0,0,.25)})

bpy.ops.armature.extrude move (TRANSFORM OT translat

Duplicating bones using Python: Duplication is
the process of mirroring a bone without reversing,
or making a copy, which is useful when trying to
make other bones or add them to a different mesh.
Fig. 13 shows the duplication process.

Rigging the arm and the hand: In Blender, rigs
are known as armatures. Inside the armature, the

bones are there to turn into the rig. Rigs are used to
make the process of animation easier. The rig con-
sists of: bone, constraints, custom shapes. The rig
of the arm is shown in Fig. 14. Figure 15 shows the
creation of the hand rig.

Python API for duplicating bones

import bpy

cb.head = b.head
cb.tail = b.tail
cb.matrix =
cb.parent = Db

arm = bpy.context.object.data
for b in arm.edit bones[:]:
cb = arm.edit bones.new (b.name)

b.matrix.copy()

Fig. 14. The IK Rig of the Arm
Puc. 14. IK Rig of Arm

Fig. 15. Creating the Hand Rig

Puc. 15. Coznanue py4HOM OCHACTKH

- In Edit mode a new bone has to be extruded
from the elbow. Pressing Alt P stops the connection
with the arm bone and move it back. This bone is
the pole for the arm’s IK.

- Duplicate the D _hand bone, disconnect it by
pressing Alt P, and scale it down. Using the 3D
cursor, Shift S, move the head of the new bone to

the wrist joint. This bone serves as the IK target for
the arm and also controls the hand’s rotation. It is
scaled down so that it doesn’t completely overlap
with D_hand, as the bones are in the same position.
Making the bone smaller or bigger allows seeing it
in wireframe display mode Z and makes it easier to
select. An IK constraint is to be added, using the
new bone for the hand C hand as its target and
C_arm_pole as the IK pole.

- Select the D _hand bone. On the Bone tab of
the Properties Editor, deactivate the Inherit Rotation
option in the Relations panel, as was done for the
head bone. Add a Copy Rotation constraint to the
bone, using C_hand as its target. When the C_hand
is moved, the arm’s IK is controlled, and when it is
rotated, the hand’s bone is rotated as well.

- Create the bones for a single finger and give
them their respectful names. D finger is used to
describe the finger position and the articulation
number. A tricky thing about fingers is the bone ori-
entation. One of the bones can be selected and ori-
ented correctly by rolling it with Ctrl R, and then
select the other bones of that finger, with the one
rolled being the active selection. Press Ctrl N, and
select the Active Bone option to cause the roll of the
selected bones to fit the active bone’s roll. When the
rotations are set up, select the first bone of the finger
chain, and make it a child of the hand bone.

- Create a bone with its head and tail aligned to
the beginning and end of the finger chain; this bone
controls the entire finger. At its tip, extrude a new
bone to act as the IK target. Duplicate that target,
and move it up to be used as the pole for the fin-
ger’s IK. In Edit Mode, make the C finger 3 bone

HNudopmaTuka, BHIYHCIUTETLHASI TEXHHKA H YIPaBJIeHHe 49

a child of the hand, and make the IK target and pole
children of C finger 3. Apply an IK with those
targets and poles to the D _finger 3 bone. Remem-
ber to set IK Chain Length to 3 so that it goes up
through the finger bones only. It is seen that only
the C_finger 3 bone has to be used to control it.
Rotate the bone to rotate the finger, and scale it up
and down to flex the finger.

- Duplicate the finger in Edit Mode, and place
copies of it in the rest of the finger spaces; be sure
to align and name them properly. For the thumb,
the first articulation has to be deleted using only
two. The C_finger 1 bone has to be realigned to the
deformed bones.

Constraints: a feature in Blender that allows us-
ing constraints in a mesh to tweak the range of mo-
tion of the skeleton, where without this, the bones
will not be able to function properly, it won’t have
a natural behavior. It is known that the human hand
can’t bend to a certain degree, if it bends too far it
will break and that’s not what we want, that’s why
constraints are needed. To set up constraints we
need to specify the max and min of the rotation an-
gles. When all these are done then the bones take
their natural position, as shown in Fig. 16.

Fig. 16. The Constraints of the Bones Before and After

Puc. 16. OrpanmueHnst KOCTEH 10 U TOCTE

Fig. 17. Weighing both Bones and Mesh

Puc. 17. B3BemuBanue KOCTEH U CETKU

From Fig. 16 it is clear that without the use of
constraints, the bones will not be able to function
properly.

Weighing down of the mesh and armature: is the
fusion of the 3D mesh and the bones of the arma-
ture. The structure of the bones, rigging, extrusion,
and how they work was shown, but without the fu-
sion of the mesh, the 3D object will end by separat-
ing it from the armature. This defeats the purpose
of creating an arm, as if the flesh moving separately
from the bones. So that’s why we have to bond or
fuse both the skin and bones together to make that
look realistic. Weighing is the process of joining
both the bones and skin together, this is done auto-
matically. Fig. 17 shows the weighing process of
joining both the bones and skin together, this is
done automatically. Fig. 18 shows the steps taken
from the beginning until when things are put in the
scene: start, concept of design, creation of the 3D
mesh of hand, creation of bones, rigging, skinning,
animate/simulate, render, and put in the scene. The
simulated object that was created has a representa-
tion of both a logical and physical perspective.
When looking into it we can see the perspective of
the logical aspect in the director and hand simulated
object which acts intertwine with each other. The
director gets information from the “script”. It is a
text file which contains at least thirty dimension 30
D vectors and also instructs the hand to pose in a 30
D vector, one after the other in the given direct()
method. Which means the director influenced ob-
ject calls the set pose() function of the simulated
hand object and allows a 30 D vector to pass
through it. The hand object rest on the pose told by
the vector by switching the configuration of the
bones. Once the pose of the hand is given, the di-
rector object “captures the pose” by recording the
settings of all the bones of the hand object, and
makes a keyframe in blender. This process will be
repeated for each pose in the script/text file until the
end of the text file. By creating the sequence of
keyframes, we create an animation. The hand pose
is given by set pose() function and sent to the
set_skeleton_pose() function of the skeleton func-
tion and passes the 30 D vector through it. The
set_skeleton_pose() function, then receives the pose
from the set pose() functions of every limb while
passing only the required 30D vector needed for
each limb to set its given pose.

When it’s done, the call to take up a pose, comes
from higher level, in this object. The limb class is
made up of the Limb sub-class. This class has the
bone_extrude() method. This function receives the
parameters as the parent bone object, the child bone
after extrusion, and the location tuple.

50 ISSN 1813-7911. UuTemnexryanbHble ciucTeMbl B ipon3BoacTae. 2022. Tom 20, Ne 3

Concept Design.

YES

loes the characte
design match
the description

A

NO

Create 3D mesh of
Hand

Approved?

yes

Skinning /
design

Create Bones/ add
bones to mesh

No
Approved?

YES

T rigging

Y

Animate/ simulation y Rendering

Approved?

YES

Put it to scene

Fig. 18. Flowchart of the whole process

Puc. 18. briok-cxema Bcero mporiecca

From this specific method, a new bone is extruded
from the joint of the parent bone, we do some syn-
chronization operations to ensure that the newly
created bone and the child bone object will pass as
a parameter into our code referring to the same
bone and we set the free end of the newly extruded
child bone to the x, y, z coordinates that are speci-
fied in the parameter. The sub-classes of the given
Limb class have different attributes, to which the
object of each bone of that limb is corresponding.
The bone objects consist of different attributes
such as their name, and their location and rotation,
which are related to the parent bone instead of a
global location and rotation, or a location and rota-
tion connecting initial orientation of the bone. They
also share such attributes as their parent bone object

and different variants of their children bones. They
are labelled as NULL when the bone object is cre-
ated or modified when the bone is actually extruded
by the bone_extrude() method in the Limb class.
Bone objects can also change the rotation and posi-
tion of the bone. In the sub-class of the limb class,
it also has a create XYZ() method, e.g., cre-
ate_arm() in the arm class. This method is made
from the buildup of the Limb class, once the class
attributes have been made. This method is respon-
sible for the creation of the limb. It does so by start-
ing at the bone that would be the highest in the
bone hierarchy of all the bones in the limb as seen
in the upperarm bone in the arm, and calling the
bone_extrude() method in the Limb class, passing
as arguments, the appropriate bone objects.

HNudopmaTuka, BHIYHCIUTETLHASI TEXHHKA H YIPaBJIeHHe 51

The create XYZ() method is also needed to make
the required Joint class objects by passing the bone
objects during instantiation.

The Joint class is used to set up the constraints
between the given bones. A joint object takes into
account the parameters of the child and parent bone
objects, and pairs between the bones that are chosen
to set up the needed constraint. The object also
takes the min and max location and rotation values
that are needed for setting up the constraint. The
constructor of the object calls the set constraint()
method, which builds up the constraints in Blender.

The joint consists of 2 main joints which includes
the hinge and swivel joints. In the class each joint
will create XYZ() included in each limb. Follow-
ing the human anatomy, the hinge joints can be
found in different parts of the body such as the el-
bow, knee, fingers, and ankles. looking at the cre-
ate_arm() function in the arm class, the hinge joints
are used for setting up the constraints leading to the
elbow joint and the finger joints. Sequence diagram
in Fig. 19 shows setting the pose of a rigged arm by
the director. Fig. 20 shows the class diagrams of the
final design.

Tigged

arm skeleton

Director

TigT_arm
Left_arm

elbow_joint Forearm

Bet_pose(pose_vector
Bet_pose(pose_vector]
pet pose(pose vector) ,, Set_arm_pose
«—
P —
e

move_bone(pos_x,pos_y,pos_z,rot_x,rot_y,rot_z|
>

rotate(x,y,z)

>

-~

Fig. 19. The sequence diagram of bone setting by the director to the hand mesh and the skeleton

Puc. 19. Cxema nocne0BaTeIbHOCTH YCTAHOBKH KOCTH JUPEKTOPOM Ha CETKY PYKH U CKEJIET

Fig. 19 shows the sequence of how each bone is
set by the director to the hand mesh all the way to
the skeleton, while Fig 20 shows the design in
UML form of the rigged arm. The UML diagram
shows a class named the joint class that has differ-
ent types of joints. If joint obj is selected, each joint
passes the same constraint type, and uses the given
min and max for each constraint which are the rota-
tion and location constraints. Instead of passing a
child bone and a parent bone to the constructor, the
child bone is only used for the smaller bone as each
bone can tell where the parent bone is. The joint
object in the new prototype is used as an attribute
of the limb. The initial constraints that the bones
are subject to are defined within the director, and
use the create XYZ() methods. Few modifications
were made for the DOF of the joint to function
properly following the pattern of the limb.

- For everything to work properly, the bone was
not controlled from the joint, calling the rotate() or
translate() function directly of the selected bone obj

from the set pose obj of a selected limb, instead it
is moved through joints. When moving the forearm,
the function takes the move bone funct from the
elbow joint. The elbow move bone is called as the
attribute of a forearm object. The move_bone funct
from the joint connects to the needed bone attribute
method to translate or rotate. This helps in simplify-
ing the bones movement. When moving a bone, the
best way is calling the arm individually. This is the
best method of connecting a joint object instead of
calling a function to rotate and translate the bone
differently.

- To influence the DOFs of the joint following
the whole settings of the limb, the bone class stays
as an attribute called associate joint. This is the
attribute that will be used by the set pose() method
in the limbs in order to move bones in the mesh,
e.g., the forearm bone will be connected to the el-
bow joint as it’s a linked joint also the upper arm
will have the shoulder as it’s a linked joint just like
in the human arm.

52

ISSN 1813-7911. UnTemexryanpHble cHCTeMBI B ipon3BoacTae. 2022. Tom 20, Ne 3

Skeleton
right arm: arm
left arm : arm
+fuse_limbs()
+set_skeleton_pose(full_pose_vetor:intarray)

Contains 2

limb]

+bone_extrude(parent_bone: Bone, Child_Bone: Bone) |

+bone_Create(parent_bone: Bone, Child_Bone: Bone)

Arm

-shoulder:Bone
-upper arm: Bone
-forearm: Bone
-palm: Bone
-thumb1: Bone
-thumb2: Bone

-middle1: Bone

-middle2 : Bone
-middle3: Bone

-ring1: Bone

-ring2: Bone

-ring3: Bone

-pinky1: Bone

-pinky2: Bone

-pinky3: Bone
-pre_Shoulder_joint: joint
-shoulder_joint :joint
~elbow__joint: joint
~wrist_joint: joint
~thumb1_joint: joint
~thumb2_joint: joint
-index1_joint: joint
-index2_joint: joint
-index3_joint: joint
-middle 1_joint: joint
-middle2 _join

-middle3_joint: joint
-ring1_joint: joint
-ring2_joint: joint

-pinky2_joint: j
-pinky3_joint: joint

+create_arm()
+set_arm_pose(pose_vector:intrray()
+Change_arm_configuration(joint:joint...)
+propagate_constraint(joint: joint)

1 1)

Bone
-parent_bone: Bone
-Child_bone_list: List of Bones
-pose bone: Blender pose bone object
-edit bone: Blender edit bone object
-associated_joint: joint
-name: string
-head:int
-head_radius: int
~tail: int
-tail_radius: int

joint

-bone: Bone

-ikarm1 target:Bone
-ikarm2 target: Bone
-lowerarmbone: Bone
-wristbone: Bone

-length:int
-envelope_distance:int
sint

-scale: int

+traslate (x: int, y: int, z:int)
+rotate(x: int, y: int, z: int)
+Resize(x: int, y: int, z: int)

+bone_sync()

+Set_location_constraints(..)
+Set_rotation_constraints(..)
+Set_IK_prelimbs(ikbone: Bone)
+Set_inverse_kinematics(...)
+move_bone(..)

Fig. 20. Final design class diagram

Puc. 20. OxoHuaTenpHas [uarpaMma KJiaccoB IPOEKTa

Fig. 21. The steps of the whole process

Puc. 21. Dramnbl Bcero npoiecca

HNudopmaTuka, BBIYHCINTETBHAS TEXHUKA H YIPaBJIeHHe 53

Fig. 21 shows the whole process of modelling
and addition of the riffle, starting from the cube,
modelling the two arms and hands, making bones,
extruding and duplicating bones, applying inverse
kinematics, and weighing all together.

Simulation of the arm and hand in blender

Physics simulation is used as the process of
bringing life to objects, e.g., cartoons, video games,
flight or driving simulators, where the following are
needed:

Key frames: a key frame is used to put a marker
which stores the value in time, and can define the
position of a cube set as 4 m on a frame, allowing
the animator or simulator to set the time for objects
to allow them to move.

Fig. 22 shows when a key frame is set, it is possi-
ble to set up the time on different marker then play
back everything as one, like a movie. They are dif-

Select Add Object

elect Add Object

ferent types of keyframes: Keyframe, white/yellow
diamond, is a normal keyframe; Breakdown, small
cyan diamond, is a breakdown state. e.g. for transi-
tions between key poses; Moving Hold, dark
gray/orange diamond, is a keyframe that adds a
small amount of motion around a holding pose. In
the Dope Sheet it will also display a bar between
them; Extreme, big pink diamond, is an extreme
state, or some other purpose as needed; litter, tiny
green diamond, is a filler or baked keyframe for key-
ing on ones, or some other purpose as needed.

The design after implementing everything in-
cludes: Pose of the hand, adding a riffle, rendering,
adding skins, adding bullet simulation, and back-
ground

Fig. 23 shows the first prototype and the final
design after putting everything together..

Marker

0- K . jew Marker

Fig. 22. Visualization of keyframe Set up in blender

Puc. 22. Busyanuzanus HACTPOMKH KITFOYEBOTO Kazpa B biuernepe

Fig. 23. Before and After

Puc. 23. 1o n mocie

Design flaw: The original prototype had prob-
lems with its design, constraints and rigging be-
cause the calculations were wrong and the hinge
joint wasn’t included. From the first design dia-
grams it’s obvious that it doesn’t have any skin
color and the gun setup wasn’t included but in the
final design this issue was fixed.

Additions on features: The final design has new
features which includes a forest as a background, an
AK 47 rifle, bullets, better rigging, better anima-
tion, and better pose.

Fig. 36 shows a use case diagram showing the
future scope of the whole project when integrated
into a First-Person Shooter FPS game, which can be

used to train biathlon sportsmen and army soldiers
for precise shooting.

Conclusion

The whole process of modelling and simulation
of two anthropomorphic manipulators were done
and illustrated in Blender, starting from the cube,
modelling the two arms and hands, making bones,
extruding and duplicating bones, applying inverse
kinematics, and weighing all together was dis-
cussed and illustrated. This work was intended for
showing how two robotic arms and hands can work
together in a cooperative task and as a case study
the task of shooting with an AK 47 rifle, which was

54 ISSN 1813-7911. UuTemnexryanbHble ciucTeMbl B ipon3BoacTae. 2022. Tom 20, Ne 3

added to the virtual environment with a chart and a
background to demonstrate the simulated process of
firing a rifle without even touching it. This work is
intended to be integrated into a First-Person
Shooter FPS game, which can be used to train bi-
athlon sportsmen and army soldiers for precise
shooting.

References

1. Blain J. M. (2018). The complete guide to Blender
graphics: computer modeling & animation. CRC Press.

2. Urrea C., Saa D. (2020). Design and Implementa-
tion of a Graphic Simulator for Calculating the Inverse
Kinematics of a Redundant Planar Manipulator Robot:
Semantic Scholar. Applied. Sciences. vol. 10(19),
p. 6770.

3. Al Akkad M. A. (2014). Exploiting two ambidex-
trous robotic arms for achieving cooperative tasks, Vest-
nik ISTU, no. 4, pp. 134-139.

4. Al Akkad M.A. Complexity Reduction for two
Human-like Ambidextrous Robotic Hands Control, In-
ternational Siberian Conference on Control and Commu-
nications SIBCON, IEEE. Pp. 1-7.

5. Anders M. (2010). Blender 2.49 scripting: extend
the power and flexibility of Blender with help of Python;
a high-level, easy-to-learn scripting language. Packt Pub-
lishing.

6. Assaf, E. (2016). Rigging for games: a primer for
technical artists using Maya and Python. CRC Press,
Taylor and Francis Group.

7. Pieper D., Roth B. (1969). The kinematics of ma-
nipulators under computer control. In Proceedings of the
Second International Congress on Theory of Machines
and Mechanisms, pp. 159-169.

8. Pitarch E. P., Omar A. A., Abdel-Malek K., Yang
J. (2007). Virtual human hand: grasping strategy and
simulation. PhD thesis, Universitit Polytechnic de Cata-
lunya.

9. Wadsworth C. T. (1983). Clinical Anatomy and
Mechanics of the Wrist and Hand. Journal of Orthopedic
and Sports Physical Therapy. Vol. 4, no. 4, pp. 206-216.

10. Taylor C. L., Schwarz R. J. (1955). The Anatomy
and Mechanics of the Human Hand. Artificial Limbs,
Vol 2, no. 2.

11. Tolani D., Badler, N. L. (1996). Real-time inverse
kinematics of the human arm. Presence Teleoperators &
Virtual Environments, MIT Press.

12. Craig J. (2005). Introduction to Robotics Me-
chanics and Control. 3" edition. Prentice Hall.

13. LaValle S. (2006) Planning Algorithms. Cam-
bridge University Press.

14. Mullen T. (2012). Mastering Blender, 2nd edi-
tion. Blender Store.

15. Villar O. (2017). Learning Blender: a hands-on
guide to creating 3D animated characters. Addison
Wesley Professional, 2™ ed.

* % %

MO}IEJ’[HpOBaHHe ABYX ABYPYKHX aHTpOl’[OMOpq)]—[])lX MAaHMITYJATOPOB 1/ BHINNOJTHEHUSI COBMECTHBIX 3a/1a4

I 4. Yoox, crynent, Ux['TY umenn M. T. Kanamankosa, Nxesck, Poccns
M. A. Anb Axxao, KaHIUOAT TEXHUIHCKUX HaYK, MoueHT, VI TY nmenn M. T. Kanamaukosa, Mbxesck, Poccus

Cmambusa noceéawena paspabomke pobomusuposanHol pyku npu nomowu 3D-modenuposanus. Ilpumenen npo-
epammusii npooykm Blender, npeocmasnsrowuti cobou npoepammy 0as 3D-mooenuposanus Ha s3vike RPOSPAMMUPO-
eanusi Python. IIpoepammuomy obecneuenuto Blender 6vi10 omoano npeonoumenue no cpagHeHuro ¢ npocpamMMHbIM
npodykmom Maya, nockonvky smo ceoboonoe I10, komopoe nooxooum cmyoenmam OJist 8bINOJHEHUSI NPOEKmMOo8, 00-
aaoaloujee npu SMOM MAKUMU JHce XAPAKMEPUCUKAMU, OHO Oolee OOCYNHO, U MOOeIUposanue noayiaemcs bonee
peanucmuynvim. Pobomuszuposannas pyka npoexmuposanace nocie noopooHo20 usyyenus pyKu u KUCmu 4eio6exd.
Boinu biéedenst gbipadicenuss 0Nisk ONUCAHUSL KUHEMAMUKU pobomusuposannoi pyku. Modenuposanue noxazvieéaem,
Hanpumep, KaK 08udicemcs npeonjiedve npu cmpenvoe U3 NUCmonema u Kyoa Hanpasisiomces nyiu, 3mo Oblio cOelano
NpU NOMOWU QHUMAYUY NO KIIOHe8bIM Kadpam u uepel. Moderuposanue 08yx pooomu3upoSaniblx npeoniedutl u Kuc-
metl npu cmpenvoe uz AK-47 no yenmpy muwenu 6vii0 peanuzogano na szvike Python u I10 Blender. Lenvio pabomol
sensiace unmezpayust 6 uepy First-Person Shooter FPS, komopylo MOJiCHO npumeHsmb npu no020mosKe OuamioHu-
CMo8 u conoam 0as ompabomKy mouHocmu cmpenvowl. [Ipsamas u 0opamuas KunemMamurxa npumensiemcs 0 obecne-
YeHUST OBUICEHUSI YCMAHOBKU De3 NOJIOMOK U 0eOpMUpOSaHus npu 6vlbope NOJONCEeHUs 36eHbes OJisl POPMUPOBAHUS
€0UHO020 Y3lld ¢ ROCAEOYIOWUM 000ABIeHUEM OPYICUsL U NAOeHUeM 2Ulb3 npu docmudicenuu yeau. Ilocne smoeo ¢aiin
IKCROPMUPYEMCSL.

Keywords: Blender, po6oTnsnpoBaHHast pyka, MOAEINpOBaHNE, OOpaTHas KWHEMAaTHKa, HalaaKa, aHUMaIlysl.

[omyueno: 05.07.22

