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Biometric featuresare common measures of identity verification where signaturesarethe most used type. The digi-
tal technology has given birth to new ways of biometric identification, such as fingerprints, iris and face recogni-
tion,while dealing with handwritten signatures is still a challenging task, because handwritten signatures are more
prone to forgery than other means of verification due to issues like computer error, insufficient datasets, and loss of
information. This work aims to develop a system that takes a signature image as its input and determines whether the
signature is genuine written by its author or forged by another individual. The system is based on a neural network
algorithm called Convolutional Siamese Neural Networks, which is used for deep learning and computer vision as
well as other machine learning tasks such as natural language processing and digital signal processing.A Contrastive
Loss function which compares the Euclidean distance of the output feature vectors is used, and a writer-independent
model is used for training and image classification. This work’s objective is toenhance the precision of signature veri-
fication and take it as a base for future work on signature verification and use it in user identification, fraud detection
and prevention, and forensic investigation applications. The system can be applied in banking, government and pri-
vate organizations, and forensic investigation for identity and document verification, impersonation and fraud detec-
tion and prevention, crime and judicial investigation, and passport verification.
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Introduction

Biometric identification is the process of verify-
ing and authenticating people based on their phy-
siological and behavioral characteristics. Physiolog-
ical types of biometrics are based on an individual’s
physical and biological features such as face, iris
and fingerprints while behavioral types are based
on individual’s behavioral traits, mainly their signa-
ture. Signature verification in particular is the most
common type of biometric identification particular-
ly regarding the verification of official documents,
bank cheques, and others. Signature verification is
divided into dynamic signature verification, and
static signature verification, where dynamic or on-
line signature verification involves an individual
signing on specialized equipment such as a pressure
sensitive tablet with a specialized pen designed for
the tablet, while static or offline based verification
involves an individual signing on a document or a
piece of paper and scanning the signature into the
computer before verifying the signature [1, 2]. On-
line signature verification still remains obsolete due
to the need for specialized equipment for capturing
and recognizing the signatures,besides the need for
ways to recognize signatures taken in an offline
environment using online systems and able to dis-

tinguish genuine signatures accurately.While of-
fline handwritten signature recognition is more
adopted than online handwritten signature recogni-
tion, it poses more challenges and is far less effi-
cient than its online counterpart, because online
handwritten signature recognition takes into ac-
count more features of a signature than offline
which often lacks information. Offline signature
recognition still remains difficult to achieve despite
a larger amount of research done than online signa-
ture recognition, due to loss of a lot of dynamic in-
formation [3]. When dealing with offline signature
verification, a set of signatures have to be collected
with genuine signatures which are employed in the
training of the model which will then be tested us-
ing a different set consisting of genuine signatures
and forgeries to assess the system's performance [4,
5]. There are writer-independent signature verifica-
tion systems, when a single model is used for image
classification [6], and writer-dependent systems,
when one model is trained for each user [7]. Train-
ing writer-independent models raises more chal-
lenges than writer-dependent classifiers and per-
forms worse than writer-dependent classifiers, but
poses a better chance of generalization.Some of the
major challenges with offline handwritten signature

© Albasu F. B., Al Akkad M. A., 2023



28 ISSN 1813-7911. UuTemnexryanbHble ciucTeMbl B ipon3BoacTie. 2023. Tom 21, Ne 3

recognition include lack of datasetsdue to security
purposes, high-intra class variability where
handwritten signatures often show large variability
between samples of the individual. This often leads
to a larger percentage in False Acceptance Rate
(FAR), False Rejection Rate (FRR), and Equal Er-
ror Rate (EER). When working with forgeries, there
is little inter-class variability, making competent
forgeries difficult to identify from real signatures.
This further exacerbates significant intra-class va-
riability when forgeries are made specifically to
target an individual, making the resemblance too
convincing[8].The largest publicly available dataset
is the GPDS-960 which contains signatures from
881 users with 24 genuine samples and 30 skilled
forgeries per user. The process of handwritten sig-
nature verification consists ofdata acquisition
which involves collecting genuine and forged sig-
natures,preprocessing that involves enhancement of
images by removing features that may hinder the
model’s development, and restoring lost informa-
tion that would enhance the model’s accura-
cyfeature extractionof the signature,and model
trainingthat involves classifying the images.A tra-
ditional neural network learns to predict many
classes which usually cause an issue when classes
are added or removed from the data. In such cases,
the neural network (NN) needs to be updated and
retrained on an entire dataset. Deep neural networks
also require a vast amount of data to train on. In
contrast, Convolutional Siamese Neural Networks
(CSNN) learns a similarity function. As a result, it
can be trained to detect if the inputs are identical
which allows for classification of new types of data
without having to retrain the network.In this work
aCSNNwas used for classification. Convolutional-
SiameseNeural Networkshave two or more similar
subnetworks, which share the same setup, parame-
ters, and weights. The updating of parameters is
duplicated throughout both sub-networks. These
networks are utilized in a wide range of applica-
tions to determine the similarity of inputs by com-
paring feature vectors.

Development of the system

The system aims to enhance precision of signa-
ture verification using CSNN along with Contras-
tive Loss as the loss function which compares the
Euclidean distance of the output feature vectors [9,
10].CSNN is an architecture that has two or more
similar subnetworkssharing the same setup, para-
meters, and weights to determine the similarity of
inputs by comparing feature vectors. The updating
of parameters is duplicated throughout both sub-
networks.Contrastive loss calculates the distance
between similar and dissimilar input and output

pairs of a network by projecting them onthe Eucli-
dean space. This means that signatures of the same
class(genuine-genuine) would be placed close to
each other as opposed to signatures of different
classes(genuine-forged) which would be placed far
from each other on the plane as shown on Fig.1.The
system can be integrated into different larger sys-
tems and serve as a method of verifying and au-
thenticating users and customers digitally with the
use of offline signatures. The system can be applied
in banking, government and private organizations,
and forensic investigationfor identity and document
verification, impersonation and fraud detection and
prevention, crime and judicial investigation, and
passport verification. The block diagram of the sys-
tem, as shown on Fig. 2, involves data acquisition
that is usually done in a controlled environment to
minimize the amount of noise and maximize the
amount of features that could give the best possible
accuracy when training the system, preprocessing
to prepare the dataset being fed into the system by
removing any feature that might hinder the learning
optimization of the system,feature extraction and
learning wherein the case of convolutional neural
networksthere’s no need to extract the features
since the network is going to learn the features be-
fore classifying the signatures,and model training
and testingwhere the images are being fed into the
network in order to learn the features and use those
features for classifying the signatures, then testingis
done with a different set of signatures for analy-
sis.The system activity diagram is shown on Fig. 3.

Data Acquisition Preprocessing. Data acquisi-
tion process involves collecting both genuine and
forged signatures from users across multiple ses-
sions. The user provides multiple samples of their
genuine signatures for each session in a form con-
taining several cells which often have sizes that
match commonscenarios such as bank cheques and
credit card vouchers [11].

For the forgery, users are provided with genuine
samples of other users to imitate multiple times in
order to obtain random, simple and skilled forgeries of
the signatures. After the signatures have been ac-
quired, they are then uploaded to the system for pre-
processing. This is done to remove any factors that
might hinder the model's accuracy during training and
ensure that the signatures are standard and ready for
feature extraction.The main preprocessing steps ex-
traction of signature from where it is located in a doc-
ument, noise reduction to remove the noise caused
during the scanning of the documents, resizing and
centering where the image is cropped down to the
signature boundaries and then centered on the image
[12] maintaining high quality resolution, binarization
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that involves transforming the grayscale images to
binary, but it is not taken into account in online verifi-
cation systems because it’s already been done on the
dataset, thickening or thinning that is the process of
growing selected regions of the foreground by insert-
ing pixels to the objects or removing the pixels from
the foreground by making it one pixel thick, while
preserving the extent and connectivity of the fore-
ground by forming a 4 or 8-connectivity. Other pre-
processing steps include clutter removal which in-
volves removal of unconnected dots by masking and
skeletonization which involves removal of selected

foreground pixels from the binary image [13,
14].The preprocessing algorithm is shown on
Fig.4.In order to feed the images into the network,
they need to be organized, labeled and preprocesse-
dusing Binarizationto transform the image from
grayscale to binary image to reduce the complexity
and execution time, Resizingto resize the image
based on a canvas Cof size HxWconverting it into
tensors that will be fed into the network, and Image
Pairingto group the images into pairs of genuine
and forged, labeling them 1 if both images are ge-
nuine and from the same author and 0 if not.

Preprocessing

// o Siamese
S| NN [
Genuine |
Shared Contrastive
Weights —> Loss
P .
reprocessing \4 Predicted
// P —>| Siamese Output
CNN2 —
Genuine
a
/’( S A \__’ \ /l i /\' °
Genuine CNN \ © Genuine ‘\ CNN
0
s / L / \
) ‘,;PJL L
; O
Genuine Forged /
Vector Space Vector Space
b

Fig. 1. a) Overview of the verification process, b) Representation of signatures on Euclidean space
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Feature Extraction and Learning. The main
purpose of handwritten signature verification is to
minimize the number of features in a dataset, creat-
ing new features from current ones, then removing
the original characteristics [15, 16]. The feature
extraction techniques can be classified as static and
pseudo-dynamic where pseudo-dynamic features
attempt to recover dynamic information like speed
and pressure from the signature execution process.
Another classification involves distinguishing be-
tween global and local features where global fea-
tures describe the whole signature image factoring
in characteristics such as width and height while
local features describing specific parts of the im-
ages either by segmenting the image or dividing the
image in a grid and applying feature extractors to
each part of the image [17]. Function and parameter
features can be used for signature verification,
where function features characterize the signature
in terms of a time function whose values constitute
a feature set while parameter features characterize
the signature as a vector of elements, each one
representing a feature value [18, 19].

The result of a preprocessed signature image is
shown on Fig. 5. Parameter features can be catego-
rized into global and local parameters with local
parameters further divided into component oriented

and pixel oriented. Function features are adopted in
the case of online or dynamic signature verification
with the most common ones being position, veloci-
ty and acceleration. These features are captured
during the data acquisition phase, using devices
specifically developed for capturing such features.
Parameter features such as the pen-down time ratio,
number of pen lifts and other global parameters that
are numerically derived like the average, the root
mean, minimum and maximum values of position,
displacement, acceleration and speed are mainly
used for dynamic signature verification. Local pa-
rameters are more widely used in static or offline
signature verification [20]. These are either compo-
nent-oriented features such as geometric, slant,
contour, and orientation features or pixel-oriented
features such as grid, texture and shadow-code fea-
tures [21, 22]. Lately, Deep learning (DL) ap-
proaches are being adopted for feature learning and
classification because as opposed to traditional Ma-
chine learning (ML) algorithms which break down
the problem and solve different parts separately
before aggregating the results to give a final output,
DL techniques solve problems using an end-to-end
approach, i.e. take an image, extract several differ-
ent features from it and deliver an output classify-
ing what type of input it is [23].
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Unlike most of the classical ML techniques that
are restrictive and use handcrafted feature extrac-
tors, DL techniques learn both low-level and high-
level features, eliminating the need for handcrafted
feature extraction and can be applied on various
domains, due to techniques such as transfer learn-
ing which leverages the use of pre-trained networks
for other applications within the same domain. In a
writer-dependent approach, each model is trained
for a user, using their real signatures and forgeries
at random from other signers. This is the more
commonly used approach in the literature. The
writer-independent approach uses a single classifier
for all users [24]. There have been cases where both
approaches have been combined in a single hybrid

solution [25] [26, 27]. In [28] a ConvNet (CNN)
model based on the VGG16 architecture using the
ICDAR 2011 SigComp dataset was proposed
achieving accuracies between 95 and 97 %. In [29]
a CNN model using python, Keras library and Ten-
sorFlow, trained on a dataset of 300 signature im-
ages (150 real and 150 forged) was used achieving
accuracies on different splits of the dataset, where
on an §:2 ratio split, a training accuracy of 99.9%
was achieved. In [30] a classifier was pro-
posed,trained ona publicly available datasets
MCYT and BHSig260, and achieved accuracy be-
tween 95.29% and 97.79%. Hidden Markov Models
are used when the state of a system cannot be ob-
served but only the result of some probability func-
tion is available [31]. In [32] an off-line system was
presented based on the Hidden Markov Models
with a total dataset of 4000 signatures, and in [33],
afteradding a pixel distribution feature to the mod-
el. Other HMM based signature verification tech-
niques are described in [34, 35]. Dynamic Time
Warping (DTW) has proven to be as competitive
and even outperform the HMM based methods
[36]. DTW focuses on online signature verification
using template matching techniques. In [37] an en-
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hanced DTW model that computes the distance be-
tween two signatures and assigns special parame-
ters to each signer was proposed. Features extracted
include quantized directions, curvature changes,
speed, and pressure, trained on the SUSIG database
with skilled forgeries. The best result for Receiver
Operating Characteristic (ROC) area under curva-
ture gotten was 99.5 with equal error rate of 3.48
%. In [38] an off-line system based on SVM mod-
els was presented and compared it to Multi-Layer
Perceptrons (MLP). In [39] an offline verification
system was proposed that converts the images into
time series data, using linear scanning and identify-
ing the time series shapelets. Mahalanobis distance
measure is used for comparing two time-series data
and a dataset containing 1287 questioned signatures
and 646 reference signatures were used and an EER
of 5.8% was obtained,it was based on an interval
symbolic representation and fuzzy similarity meas-
ure, using a dataset of 16200 offline signature im-
ages [40, 41]. Feature extractors are mostly built on
specific features. Applying, DL approaches to fea-
ture extraction have proven to be more reliable, be-
cause of their robustness and ability to learn more
features. The inputs of a perceptronx;: i=1, 2, ..., n
are multiplied by their corresponding weights w;w-
hich is then added to the biash(predetermined
weight thatallows modifying the output indepen-
dent of the input)., forming the outputas inEq. 1:

J%) = Xi=g wix; + b
0if f(x)=0 |
1if f(x) <0 (1
The bias or threshold influences the output de-
pending on whether it’s less than or greater
thanw; x;.The activation function determines the
output of a node, and helpsDL models separate
many forms of data in anNN thus activates the out-
put. It is of two types:linear activation functionw-
hich separates the data in a linear fashion, this
works normally in a scenario where the difference
between the sorts of data are evident enough to be
discovered by the model,non-linear activation func-
tionthat separates the data in a non-linear fa-
shion,which helps the network to adapt to more
nuanced patterns in the data that might make it dif-
ficult to separate with a linear activation function.
Convolution is a mathematical operation which ex-
presses how the shape of a function is modified by
taking two input functions f and gand producing a
third function(f*g). CNNs are deep multi-layered
NN that primarily take images as input, capture the
spatial and temporal dependencies of that image
using layered filters in order to differentiate one
image from another [42].CNNs consist of three
main layers:

output = {

Convolutional Layer (kernel/filter):performs the
convolution operation as in Eq. 2 on an input pro-
ducing a feature map and extracting high-level cha-
racteristics from the input image, such as edges.
This filter moves according to a parameter called
stride which determines the pixel or unit value the
filter will move across the input at each step. A
kernel with a stride length of 1 will move 1 pixel
across the input until it reaches the end of the ma-
trix and then move down 1 pixel until it reaches the
bottom of the matrix.

(f *PIn] = Lm=-o fImlg[n —m] (2)
Pooling Layer: lowers the spatial size of the con-
volved feature in order to decrease computational
power required to process data and extract domi-
nant features that are rotational and positional inva-
riant. There are two types, maximum pooling and
average pooling. The former returns the greatest
possible value from a covered portion of input by
the kernel while the latter computes the average of
all values in the covered portion. Max pooling per-
forms relatively better than average pooling be-
cause of its capacity to suppress noise along with
dimensionality reduction while average pooling
uses dimensionality reduction as a noise suppress-
ing mechanism [43].

Fully-Connected Layer: determines the class of a

specific input by using the characteristics discovered
via the convolutional and the pooling layer. It con-
verts the outputs from the convolutional and pooling
layers from 3D to 1D vector using a method called
flattening which arranges the 3D volume of numbers
into a 1D vector. This layer consists of a set of multi-
layer perceptrons along with a softmax activation
function for classifying the input according to its
learned features and parameters.
Other optional layers in CNN are the non-linearity
layer which is placed between convolutional and
pooling layers in order to pass through an activation
function such as the Rectified Linear Unit (ReLU).
The Dropout layer is used for network regularization,
preventing overfitting and increasing the model's ac-
curacy by temporarily disabling a certain percentage
of the total neurons at each training-phase iteration.

Model Training and Testing. A155%220 grayscale
channel input was chosen. The convolutional and
pooling layers are given as (NxHxW) whereNis the
number of filters, H the height, and W the width of the
filter. The network is made up of a set of convolution-
al, pooling, normalization, dropout and fully-
connected layers which the image is passed through
for feature learning and classification. The image is
passed through four convolutional layers. The first
layer is made of 96 convolutional kernels, of size
11x11 each, and 1 pixel stride. The second contains
256 kernels, of size 5x5 each, and 2 pixels stride. The
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third and fourth contain 384 and 256 kernels respec-
tively each of size 3x3, and 1 pixel stride, a padding
of 1 pixel and are connected to each other with no
layer between them. These layers perform a series of
operations on the image called filtering by shifting the
kernel across the image, performing a matrix multipli-
cation on each portion of the image in order to pro-
duce a feature map and extract high-level features
from the image such as edges and vertices. A padding
of 1 pixel was added to the second, third and fourth
layers of the network. The images are passed through
3 max pooling layers. The first layer consists of 96
filters each of size 3%3 and a stride length of 2. The
second and third each consists of 256 filters with size
3%3 and stride length of 2. The pooling layers are de-
signed to reduce the spatial size of the convolved fea-
ture in order to decrease computational power re-
quired to process data and extract dominant features
that are rotational and positional invariant. The image
passes through two Local Response Normaliza-
tion(LRN) layers after the first and second convolu-
tional layers. This along with the Rectified Linear
Unit(ReLU) activation function, regularize the net-
work and perform lateral inhibition on the network,
which is a process in which a neuron subdues its
neighbors and increases sensory perception by creat-
ing a contrast in the area. The LRN layer consists of
the following parameters:k=2, n=5 (where n is the
size), a= le™, $=0.75.The outputs from the convolu-
tional and pooling layer are moved to the fully-
connected through a process called flattening, by con-
verting the vectors from 3D to 1D vectors and arrang-
ing them as 1D array vector. The first fully-connected
layer consists of 1024 neurons and it’s attached to a
Dropout layer while the second fully-connected layer

Table 1. The architecture’s parameters
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consists of 128 neurons which is also the dimension
of the most taught characteristic of each side’s vector
in the network. The Dropout layer is used for
network regularization, preventing overfitting
and enhancing the precision of the network by
temporarily disabling a certain percentage of the
total neurons at each iteration of the training
phase. The first and second dropout layers in the
network are set to a value of 0.3 and the last dro-
pout layer which is connected to the first fully-
connected layer is set to a value of 0.5, i.e., 30%
of the neurons will be dropped during the first
and second dropouts and 50% will be dropped
during the final dropout. The architectural para-
meters are shown on Table 1.To determine
whether the model is learning well, it needs to be
measured using a loss function so it could be op-
timized using an optimization algorithm, and ad-
just the learning rate. This is done to reduce un-
derfitting when a model learns too little from the
data and fails to perform accurate predictions on
the samples, due to the lack of appropriate
amount of data or when building a linear model
with few non-linear data, andto reduce overfitting
when a model learns too much from the data and
fails to adapt when provided with novel data and
inaccurate data entries in the datasetdue to which
the model learns too many details and noise from
the dataset. Loss functions are functions that eva-
luate how an algorithm is modeling its data by
calculating the distance between the expected and
current output of the algorithm. The most com-
mon loss function is cross-entropy that calculates
the probability difference between the distribution
functions and determines the output.

Layer Size Parameters
Convolution 96x11x11 Stride = 1
Local Response Normalisation — a=107% B =0.75,k=2, n=5
Pooling 96x3x3 Stride =2
Convolution 256%x5%5 Stride = 1, padding = 2
LocalResponseNormalisation — a=10—-4, =0.75, k=2, n=5
Pooling + Dropout 256%3%3 Stride =2, p=0.3
Convolution 384x3x3 Stride = 1, padding = 1
Convolution 256%3x%3 Stride = 1, padding = 1
Pooling + Dropout 256x3x3 Stride =2, p=0.3
Fullyconnectedlayer + Dropout 1024 p=0.5
Fullyconnectedlayer 128
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The input image goes through a series of convolu-
tional layers with ReLU activation function, LRN
layers, and max pooling layers, each reducing the
number of feature vectors learned by the network
with two dropout layers in between before finally
going through 2 Fully connected layers containing
1024 and 128 neurons respectively.The outputs
from the final fully connected layers are joined by
the contrastive loss function.Due to its pairwise
learning, there are two main loss functions used for
training Siamese networks both of which are dis-
tance-based losses: the triplet loss that uses a base
input to determine the output by comparing it to
both a positive (true) and a negative (false) input
and minimizing the distance between the base and
the positive input and maximizing the distance be-
tween the base and the negative input, the contras-
tive loss that calculates the distance between similar
and dissimilar input and output pairs of a network
by projecting them in a Euclidean space. This
means that signatures of the same class(genuine-
genuine) would be placed close to each as opposed
to signatures of different classes(genuine-forged)
which would be placed far from each other on the
plane. This distance is then used to predict whether
a signature is genuine or forged using a threshold
value on the distance. It is mathematically denoted
as in Eq. 3:

L(s1, S, y)=a(1-y)D*+Bymax(0,m—D)*, (3)
where s; and s, are two signature samples, mis the
margin(equal to 1 in this instance), y is a binary
function indicating if the samples are of the same or
different classes. The Euclidean distance D=||f(s;,
wi)—f(s2, wy)|I* is computed in the embedded fea-
ture space with f being an embedding function
mapping a signature image to the real vector space
through the CNN and the learned weights (wy,

Table 2. The training parameters

Tabnuya 2. TlapaMeTpsl 00y4eHHs

wy)of the underlying network. The training algo-
rithm is shown on Fig. 6. Training and saving
checkpoint stops when the epoch value becomes
equal or greater than 20.

Experiments and results

To implement the signature verification system
the following tools were used: Python for the im-
plementation of DL tasks [44, 45], Javascript for
the implementation of web demo, Pytorch DL
framework, React which is a Javascript frontend
library, Google Colab which is a cloud Jupyter
notebook, Pillow image library for manipulating
different image file formats, Flask web framework,
Gunicorn web server gateway interface HTTP serv-
er, Scikit Learn learning library for regression, clas-
sification etc., Numpy, and Scipy.

During the training, an accuracy of 97.5 % was
achieved with possible deviations of around 1-2%
depending on the threshold which was computed by
taking the average of True positive rate and True
negative rate using the ROC. The model was
trained using the CEDAR dataset which contains
signatures from 55 different signers. Each author
has 24 genuine signatures and each forger imitated
signatures from 3 authors 8 times, producing 24
forged signatures, altogether making 55x24 = 1320
genuine and forged signatures each. The images
were grouped as a pair of genuine and forged where
a pair is labeled if both samples in the pair are ge-
nuine and came from a single writer and 0 if the
samples are from different writers or one of the
samples is forged. 13500 image pairs were chosen
and split to a train test split of 85% and 15% re-
spectively.

This produced a test set size of about 4100
samples. The training parameters are described in
Table 2.

Parameter Value
Optimizer Adam [35, 36]
Learning rate 1

Learning rate scheduler

Learning rate x 0.1

Weight decay 0.0001
Batch Size 16
Epochs 20
Shuffle True
Step 0.001
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Fig. 6. The model training algorithm
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The accuracy measurement graph is shown on
Fig. 7.

The results compared to other works in the litera-
ture still proves to be a good result given that it was
trained on a significantly small dataset and training
period of 20 epochs.This is also among the few end
to end approaches in the literature where no manual
feature extractors were needed and the network
learned all the features needed for the classification
on its own.Table 3 shows a comparison with other
works in the literature, some of which used manual
feature extractors and some of which used a similar
approach of automatic feature learning.

Sample results obtained bythe signature verifica-
tion system are shown on Fig. 8.

accuracy

Accuracy metric

5

70

65

T T T T

4 6 8 10 12 14 16 18 20
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Table 3. Comparison with similar work

Tabnuya 3. CpaBHeHHe ¢ aHAJIOTHIHOW PadOTOI

Authors Approach Accuracy (%)
Gabe et al.[28] CNN Dutch: 97, Chinese: 95
Alajrami et al.[29] ANN 60-40 split: 99.7, 70-30 split: 98
80-20 split: 99.7
Anamikaetal. [30] ANN Hindi: 95.29, Bengali: 97.79

Martinezetal. [38] SVMs and MLP

SVM(characteristic): 66.5 SVM(bitmap): 71.2 MLP,
(characteristic): 45.2 MLP(bitmap): 46.8

Albasu et al. (This work) CSNN

97.5

Signature Verification web demo
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i

Result

Signature threshold: 0.145139
Image distance to closest database signature: 0.052032

Signature is authentic

Signature Verification web demo
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Choose Files | 3 files
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Images uploaded successfully
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Result

Signature threshold: 0.145139
Image distance to closest database signature: 0.275036

Signature does not match to this customer id

Fig. 8. The results of signature verification

Puc. 8. Pezynbrarsl IpoOBEpKH MOIMUCH

Conclusion

This work presents a writer-independent
handwritten-signatureverification system which
is developed using CSNNArchitecture. Unlike
most other works in the literature that use
handcrafted feature extractors, the model in the
experiment learns from the data fed into it in a
writer-independent scenario. The model has
shown a pretty positive result given the tight
budget and resources, and can be improved fur-
ther to obtain even better results if provided bet-
ter and more efficient resources. Theadvantage of
this system lies in the possibility of usingit in
many tasks such as user verification, fraud detec-
tion and prevention, and forensic investigation
and can be integrated with systems in different
applications such as banking, travel, legal and
more. Theadopted approach aims to improve
writer-independent signature verification. There
have been alternatives proposed to circumvent
the issue by training writer-independent feature

extractors and writer-dependent classifiers but
only a few works use writer-independent classifi-
ers.
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Hcnoan3oBanue MeToaA0B IiIy00Koro o0yuenusi Ajis Bepuukanumn noanucei

@. b. Anbacy, crynent, NxI'TY umernn M. T. Kanamankosa, MbkeBck, Poccus
M. A. Anb Axkkao, KaHTUAAT TeXHUYECKUX HayK,noueHT, k[ TY umenn M. T. Kanamaukosa, Mkesck, Poccus

Buomempuueckue xapaxmepucmuxu s8110MCsi pACAPOCMPAHEHHLIMU MEPAMU RPOBEPKU TUYHOCIU, 20e HAU-
bonee uacmo ucnonvsyiomces noonucu. Llugposvie mexnonoeuu nopoounu Hosvie cnocodsvl OUOMEMPUUeCKOl
udeHmuurkayuy, maxKue KaKk OMneyamxu naibyes, padydlcHas 0b0I0YKa 2na3d U pacno3Hdeanue iuy, 6 mo gpe-
M5l Kak paboma ¢ pyKonucubiMu ROONUCAMU NO-NPENHCHEMY OCMAENCSL CLOACHOU 3a0ayell, NOCKOIbKY PYKORUCHbLE
noonucu 6onee nodgepicenvl N0OOeIKe, YeM opyaue cpeocmeda Npo8epKu, U3-3a MaxKux npoodiem, KaKk KOMNbio-
mepHas owubdKa, HedoCMamounslil HaOop OaunHvix u nomeps ungopmayuu. Llenvro smoiu pabomul a611emcs pas-
pabomxa cucmembvl, KOMOPAsl UCNOIbIYEM U300padCceHue NOONUCU 8 KaUeCmee 6X0OHbIX OAHHbIX U onpedeisiem,
A6AAEMCS AU NOONUCL ROOJUHHOU, HANUCAHHOU ee a8MOopoM, uiu nooderana opyaum auyom. Cucmema ocHoeana
Ha aneopumme HeUpOHHOU cemu no0 HA36AHUEM (CEEPXMOUHbIe CUAMCKUE HEUPOHHbLE CemUy, KOMopbie UCHONb-
3yI0mcs 01 21y60K020 00yYeHUs U KOMIbIOMEPHO20 3PEHUs, a makaice 05l Opy2ux 3a0ay MAWUHHO20 00y4eHus,
MaKux Kax o6pabomka ecmecmeeHHo20 A3blKa U YUPPoevlx cucHanos. Mcnoavzyemcs (yHKyus KOHMPACMHbIX
nomepws, KOMOPAsi CPAGHUBAEM €6KAUA0BO PACCMOSIHUE BLIXOOHbIX 8EKMOPO8 NPUSHAKOS, a 0151 00YUeHUs U Kidac-
cupukayuu u300padiceHUll UCROIL3YEMCs He3a8UCUMas om 3anucu moodeis. Llenv amoiti pabomvr cocmoum 6
moMm, Ymobbl NOGLICUMb MOYHOCMb NPOBEPKU NOONUCU U 8351Mb ee 3a OCHOBY 05l Oyoyujeti pabomel NO npogepke
noonucei u UCNONb308AMb 8 NPUTLONCEHUAX O UOeHmUpuUKayuu noiv3oeameinetl, 0OHAPYICEHUs U NPeOOmsepa-
WeHUus MOWeHHUYeCmea, a makce 0 NPoedeHuUs: Cy0eOHO-MeOUYUHCKUX pacciedosanuu. Cucmema moducem
Oblmb  npuMeHeHa 6 OAHKOBCKUX, 20CYOAPCMEEHHbIX U YACMHBIX OpP2AHU3AYUAX, d mMaxdce 6 CyoebHo-
MeOUYUHCKOU IKCnepmuse 05l NPOBEPKU TUYHOCMU U OOKYMEHMOB, GbIABLEHUS U NPeOOMBPAUeHUs MOUeHHUYe-
cmea, npecmynienull u cy0eOHbLX paccied08aHUll, a makaice nPo8epKu NACHOPMO8.

KiroueBble ciioBa: GnoMeTrpuueckas MIACHTH(UKAIMS, paclo3HaBaHUE IOAIUCH, MPOBEPKa IMOAIMUCH, ayTeHTH-
¢bukanus, rmybokoe o0ydeHue.

[Tomyueno: 17.18.23
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