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The legs and hands are the most susceptible to loss and this is due to the fact that they are prominent external organs in the hu-
man body. With increasing disasters, accidents, wars and diseases the loss of limbs is increasing, making the individual restricted
in freedom and movement and pursuing to find alternatives to improve the individual's life is extremely important. Modern bionic
prostheses are the best alternatives to replace amputated ones to perform both aesthetic and functional tasks. On this basis and by
analyzing the most common and used methods in prosthetics management as the electroencephalography (EEG), electromyography
(EMG), and functional near- infrared spectroscopy (fNIRS) methods, knowing their advantages and disadvantages, comparing
them and documenting their results from the outputs of literature and previous experimental studies, whether in individual use or
hybrid use.In the light of these data, this article highlights the most common technologies and considers their superiority and insu-
periority, which can be suitable for the formation of a hybrid bionic control system for prostheses or rehabilitation and restoration
of lost functions. Based on the most important studies that have dealt with these technologies whereas individually or in their hybr-
id state. In addition, this article provides an encouraging outlook for those interested in scientific research to research, compare,
identify and characterise superior hybrid systems related to exoskeletal control systems and in particular prostheses.

Keywords: hybrid bionic control system (HBCS), hybrid brain-computer interface systems HBCI, neural interfaces, electroen-

cephalography (EEG), electromyography (EMG), functional near- infrared spectroscopy ({NIRS), prosthetics.
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Introduction

Natural disasters such as earthquakes and other, hu-
man disasters such as wars and other, road traffic acci-
dents, diseases and others leave behind a lot of disabili-
ties in various parts of the body. The physiology of the
human body is a very complex, however at the same
time an ideal and highly organized structural system
consisting of dying and regenerating cells that have le-
thargy but activate that cells work together to perform
functions necessary to maintain life. Science has not
stood still in the face of these problems, it has touched
all the problems that destroy human life to prevent them
from occurring or to monitor and diagnose them and
then develop appropriate treatment for them. In fact, it is
not possible to count human health problems in one
study, so this article seeks to focus on the external prob-
lems facing humans, especially the external limbs.

The loss of an external limb takes away the beauty of
the body's structure, therefore the amputated part must
be replaced in order to give the body its strength and
beauty. In line with this, prostheses were previously used
for decorative and cosmetic purposes, and this is docu-
mented by the ancient history in Egypt, where a large
artificial toe worn by an Egyptian woman was found
made of wood, and that was three thousand years ago
[1]. The huge revolution of technological progress that
cast a technical shadow, and entered the prosthetic com-
munity in its quest to find an alternative system for am-
putated limbs to improve the lives of amputees.

Modern bionic prostheses have controllable actuators
for performing motor tasks. Therefore, a prosthesis can be
given another definition as a controllable device that replac-
es the amputated limb to contribute to the functionality and
aesthetic structure that the natural limb had. The history of
the development of the first neural interfaces was in 1973-
1977 by a research group and has been documented in the

scientific literature [2, 3]. Neural interfaces control the de-
vices of artificial limbs and neural interfaces can be defined
as a complex of hardware and software for the connection
or functional interaction between a biological object (hu-
man or animal) and an external machine, that is, for direct
communication of computing or other digital intelligent
control systems with the brain and the most famous and
most commonly used neural interfaces are brain-computer
interfaces.

It can also be noted that neural interfaces can be clas-
sified depending on the nature of the work, while recent
studies have proven the possibility of forming another
system of neural interfaces called hybrid brain-computer
interface systems, which abbreviated as HBCIs. The
function of neural interfaces depends fundamentally:

v Based on the real-time detection of characteristic
wave patterns of brain activity carried out using neuroi-
maging methods, the most common of which are elec-
troencephalography (EEG), functional magnetic reson-
ance imaging (fMRI), functional near-infrared spectros-
copy (fNIRS), etc.

v Based on the transformation of the information ob-
tained into control commands for devices such as a
wheelchair, prosthesis or any exoskeleton, etc.

HBCIs are not limited to single data processing, but
are based on hybrid double and triple data processing
[4], [5-7]. Neuroimaging methods can be based on BCI
or hybrid neural interfaces. Currently, the most promi-
nent and popular methods for controlling neuroprosthes-
es neuro-rehabilitation are EEG [8, 9], fNIRS [10, 11]
and electromyography (EMG) [12, 13].

It is known and as documented by recent experimental
studies, the most common methods are (EEG, fNIRS and
EMG), which are of great interest in the fields of prosthet-
ics. It can be noted that these methods (when used indepen-
dently) cannot form an integrated system and this is due to
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several inherent disadvantages. However what distinguishes
these methods is that they can be one that can fill the short-
comings of the other with which they share in the composi-
tion of the hybrid system. On the related hand, fNIRS tech-
nique is one of the most important ways to form a hybrid
system, as it does not depend on muscle activity, the ab-
sence of which, muscle disease or lethargy, causes a deficit
in EEG and EMG techniques.

In the light of these data, this article highlights the
most common technologies and considers their superiori-
ty and insuperiority, which can be suitable for the forma-
tion of a hybrid bionic control system HBCS for control-
ling prostheses based on the most important studies that
have dealt with these technologies, both individually and
in their hybrid state. In addition, this article encourages
those interested in scientific research related to prosthetic
control systems, exoskeletons and in general devices that
can be controlled through the biological imagination.

Scope of the research methodology strategy

The main aim of the research was to popularize the
idea of creating hybrid bionic control systems for pros-
thetics and to identify the main directions for further
discovery and development to achieve this goal, for this
it was necessary to consider the following tasks:

e focus on the analysis of literary sources, propose
the most important criteria for candidate methods for the
creation of the hybrid system;

e evaluate the advantages and disadvantages of the
main types of neural interfaces as a hardware-software
system when used independently or in a hybrid form;

o identify, study and compare the most common me-
thods within the control frameworks of bionic prostheses;

Since the hybrid system is likely to be a comprehen-
sive and potentially promising system for controlling
prostheses, the focus has been on fNIRS technique,
which serves as a complementary tool to fill other tech-
nical deficiencies. The most important monographs and
articles describing current neural interface designs based
on various physical principles were selected for analysis.
Among a lot of scientific articles and publications, rele-
vant topics have been selected, documented in reputable
scientific journals, as well as considered sites such as
https://scholar.google.com/ and others. In addition, vari-
ous links are indicated at https://www.mdpi.com/
journal/sensors, https://www.refseek.com, and others.

Finally, some articles were discarded and some oth-
ers were deleted, and and then the opinion of experts
who have an insightful vision that to return to the es-
sence of the topic in order to establish a control system
(the subject of the research).

HBCS based on HBCI for controlling prosthetics.

Understanding brain functions is essential for effi-
cient BCI applications, and its development is closely
related to physics [14], there are also promising studies
that delve into the future development of BCI, such as
quantum sensor technology, which has great potential for
the development of BCI [15]. The classification of brain
states can be performed in real time in accordance with
the registered brain activity caused either by spontaneous
physiological processes or by external stimulation using
an intelligent BCI system. BClIs are usually divided into

categories of unidirectional (receiving signals from the
brain or sending them to it) and bidirectional (allowing
information to be exchanged in both directions), and this
depends on the direction of their work [7]. The classifi-
cation of BCIs in general is given below [1, 16].

e Control command-based classification can be
classified as: active BCI, reactive BCI and passive BCI

o Input data processing modality-based classifica-
tion can be classified as: synchronous BCI and asyn-
chronous BCI

e Invasive and noninvasive BCI and Brain-
machine interfaces can be classified as: noninvasive
BCI and noninvasive BCI

In the context of a hybridization system, a HBCI can be
in three types according to various signals of brain activity:

o HBCIs when various reflected signals of brain ac-
tivity are used.

e HBCIs when signals of brain activity in conjunc-
tion with external signals of different nature are used.

e HBCIs when various physiological brain activity
simultaneously with recording technology are used.

It has been confirmed that the performance of indi-
vidual BCI provides a lower classification accuracy than
HBCI. In a related context, one of the main reasons why
HBCIs are not widely used is the enormity of their
hardware and complexity. To decode this complexity, it
is necessary to implement lightweight and compact
HBCI with care to reduce performance degradation. In
the terminology of hybrid systems, according to the facts
of the studies of the qualified technologies and the out-
puts of the technical mix of these technologies, which
leads to an advantage over the individual methods.
Therefore, initiating a hybrid system for controlling
prosthetic limbs is possible and the proposed system can
be referred to as shown in Scheme 1.

Hybrid EEG+INIRS
approach

M

Hybrid bionic control _
system

SEMG Hybrids
EMGHINIRS

Fig. 1. The scheme of the hybrid bionic control system HBCS
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HBCS

It is noted that the hybrid system is not limited to fNIRS
technology with other technologies. As there are studies
that have used the hybrid system in combination with EEG
and EMG techniques [17, 18] as shown in Figure 2. How-
ever this system remains unpromising because it depends
on muscle activity, which may not be available in all condi-
tions, therefore the design of a control system with fNIRS
as in Scheme 1 and may be a promising and comprehensive
system for controlling prostheses.

The results of previous studies certainly make it possible
to work on finding and installing a hybrid control system
for prosthetics. It can be noted that both hybrid systems that
share with fNIRS have proven very great successes, as do-
cumented in Table 2.
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Fig. 2. The hybrid system of EEG and EMG techniques based on muscular activity
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It is also noted that there is no confirmation that there is
a superiority of the hybrid system of fNIRS with EEG over
the hybrid system of fNIRS with EMG , and this is a posi-
tive indicator that future studies should take into account by
comparing these systems and further work to establish
HBCS for prostheses and others.

Qualified technologies for the formation of HBCS

The possibility of forming a hybrid system must give
superior outputs to the individual system and this is due
to the contribution of the systems to each other to fill the
shortcomings of the other system to distinguish the hybr-
id system. Due to the importance of qualified methods,
will summarize previous studies that dealt with these
methods, whether in their independent or hybrid mode.

Independent mode

EEG

In its invasive state, EEG poses a risk to the patient's life
because it requires surgical intervention, i.e. it is implanted
inside the body (organism) and this leads to the death of the
surrounding or contacting cells as shown in Figure 3 [19],
which necessitates its replacement from time to time. In its
non-invasive state, it is highly sensitive to artifacts and
noise, which is why it has not found application in the field
of prosthetics when used individually [14]. EEG technology
has the potential to be a complementary tool to other tech-
nologies, as it provides a system with high spatial and tem-
poral resolution.

Fig. 3. Shows EEG electrodes implanted on the surface
of the brain, noting the direct contact and friction between
the cells and the implanted electrodes

Puc. 3. Tloka3zansl anexTpoas! D3I, UMITTAaHTUPOBAHHBIE
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MEXy KHOIIKaM{ W UMIUIaHTHPOBaHHBIMH 3JIEKTPOJIAMH

EMG

Electromyography (EMG) is a diagnostic method
that carries motor commands during the recording of
the electrical activity of bioelectric signals resulting
from the activities of the skeletal muscles. Surface
electromyography (sEMG) measures the electrical sig-
nal on the skin’s surface, which is generated by skeletal
muscles. It is often performed while stimulating the
relevant motor and peripheral nerves. The measure-
ment may be performed either in an invasive or surface
(noninvasive) at the level of a single muscle fiber, sin-
gle motor unit, or the entire muscle [20]. The
processing of information from the EMG enables diag-
nostics of muscle and neuromuscular disorders, or to
analyze or use the SEMG for rehabilitation or robot
control [21, 22]. However, for its relative simplicity in
acquisition and rich neural information provision con-
tent, EMG plays an important role in the control of
modern robotic prostheses [23, 24].

The stochastic nature of EMG makes the search for
repeatable and reliable characteristics of the signals very
challenging [25, 26]. However, it is still used individually
in prosthetics research as there are serious studies to de-
velop a system for evaluating pattern recognition algo-
rithms on hannes prostheses [27]. In a related context,
SsEMG is not sufficiently used as a tool for clinical deci-
sion-making, where reliable extraction of information
requires knowledge of appropriate methods as an indica-
tor for measuring muscle activity, analysing sSEMG and
understanding of basic biophysics. However, there are
attempts to bridge the gap [28] and consider the chal-
lenges between theoretical knowledge and practical appli-
cation in order to employ it in clinical scenarios in rehabil-
itation medicine.

SNIRS

One of the neuroimaging technologies on which
hopes of creating a control system for prosthetic limbs
may be based. The results and classification accuracy
recorded by fNIRS when used individually are lower
than the results recorded with other technologies when
used as a hybrid system, i.e. superior to the hybrid sys-
tem. Research on fNIRS technology is extensive and
ongoing [29, 30], and to this day there are ongoing stu-
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dies on the use of fNIRS technology for prosthetic con-
trol as shown in Figure 4.

Fig. 4. Shows a subject performing experimental tasks
in a laboratory at Belgorod State University in Russia
in pursuit of finding a control system for prostheses

Puc. 4. TlokazaH UCTIBITYEMBIH, BBITOJHSAIOIINN
SKCTIEpUMEHTANIBHBIE 3aJaHus B TabopaTopuu benropoackoro
roCyJJapCTBEHHOI'0 yHUBepcuTeTa B Poccuu B monckax
CUCTEMBI YIIPaBJICHUs JJIs IPOTE30B

Today fNIRS has wide application in various fields
such as neurology, clinical application, neonatal applica-
tion, pediatrics, cognitive and social neurology, neuro-
prosthetics with robotic control, neurorehabilitation and
others. Recent research shows that fNIRS can form a
hybrid system with EEG or with EMG.

Hybrid mode

The main essence of the hybrid system configuration
of any system, whether it is a plant, animal, technical, or
software system, is that one of the systems must com-
plement the shortcomings of the other, noting that the
hybrid system configuration must be conditioned to
achieve outputs that are not equal to those received from
the autonomous system, however the results must be
clearly superior when using the hybrid system. On the
other hand, when proceeding to the formation of a hybrid
system, it should be if there are at least partially similar
characteristics in both systems, which allows us to simp-
ly form a hybrid system.

EEG+fNIRS

The possibility of configuring a hybrid system of
fNIRS and EEG is consistent with the above, because the
outcomes that obtained from these techniques are better
than those obtained when used independently, and some
characteristics of these two techniques are similar. In the
composition of EEG, sensors-electrodes are placed on
the skin of the upper part of the skull (international sys-
tem "10-20") and capture electrical signals from neurons
in the brain. This can be measured in the electrical activi-
ty of the brain, can monitor complex neuronal activity
and its changes [14].

EEG has many advantages and disadvantages that
may be compatible with fNIRS. For example, they are
compatible with non-surgical intervention, EEG technol-
ogy may be affected by its very high sensitivity to arti-
facts; therefore, fNIRS may become an alternative to this
feature, or there may be a challenge facing the hybrid
system involving these two technologies. In addition, the
EEG signals provide high temporal resolution, allowing

real-time measurement of motor imagery [31], which can
be converted into control signals to assist with motor
movements. Unlike fNIRS, which suffers from a time
delay of 3—5 seconds in detecting areas of brain activity.
It has also been widely reported that better BCI perfor-
mance can be achieved with multimodal analysis instead
of standalone EEG signals. Therefore, multimodal stu-
dies that assess both the electrical activity of the brain as
well as the activity of the circulatory system attracted
great attention of researchers [32, 33]. Moreover, recent
scientific studies based on the analysis of activated brain
regions using fNIRS proved that the auxiliary motor cor-
tex was obviously activated during motor imagery,
which means that hybrid signaling with a hybridization
strategy can enhance stability and error ignoring in BCI
systems, which qualifies it to be a valuable technique for
practical applications

sEMG+fNIRS

The SEMG and fNIRS methods can be used separate-
ly or together. In scientific studies related to sports activ-
ity and neurophysiology, the focus has been on various
sports disciplines as subjects of research [34] or the use
of fNIRS as a hybrid system use it as a hybrid system
with fNIRS to enhance the accuracy of classification of
transuterine prostheses [35].

The EMG frequency ranges vary from 0,01 to 10
kHz, depending on the type of examination (EMG or
SEMG). The most useful and important frequency ranges
are within the range of 50150 Hz [20]. While the fNIRS
frequency is approximately equal to 1 Hz at 830 nm,
which is the optimal wavelength [14, 36]. Several scien-
tific studies have focused on the implementation of
fNIRS and EMG technologies in motion but were not
related to the interrelationship of signals during specific
sports in dynamic movements. Moreover, most of them
do not include a description of the signal analysis methods.
Kimoto et al. found it possible to perform simultaneous
EMG, mechanomyography (MMG) and near-infrared
spectroscopy (NIRS) measurements at a local position
using a wireless multi-layered sensor, which could be
used to predict muscular fatigue [37].

Giminiani D. et al. [38] implemented a recently de-
veloped integrated quadriceps muscle oximetry/EMG
system, when comparing regional muscle oxyhemoglo-
bin saturation and surface EMG data measured under
resting and dynamic conditions (treadmill run and
strength exercises). When recording oxygen consump-
tion and muscle activity of the gastrocnemius muscle of
the left leg for participants, Daniel N. et al. found posi-
tive correlations between EMG and fNIRS signals,
where the signal correlations between the participants
with the most active and least active life style [39]. In a
related context, the shapes of the changes in the EMG
and fNIRS signals during exercise suggest a mutual rela-
tionship during dynamic movements. The close and sig-
nificant positive correlations between cerebral oxygena-
tion changes (fNIRS) and EMG signals during motor
tasks provide evidence for creation hybrid system used to
further explore the mapping relationship between brain
activity and motor task execution and can be directed
toward clinical studies.
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It is noteworthy that the composition of the hybrid
system is not limited to the work of prosthetics only, but
extends to multiple areas for example, the hybrid system
consisting of EMG and NIRS is used to monitor muscle
fatigue [40]. The superiority and insuperiority of the
technologies supporting the creation of a hybrid bionic

control system are listed in Table 1.

Table 1. Superiority and insuperiority of EEG, EMG
and fNIRS technologies respectively

Tabauya 1. TIpeBOCX0ACTBO M HEMPEBOCXOICTBO
TexHoJoruiit I3, OMI u fNIRS cooTBeTCcTBEHHO

The experimental results of previous studies of both
modes are shown in Table 2.

Table 2. Comparison of classification accuracy results
for qualified systems (independent and hybrid mode)

Tabauya 2. CpaBHeHHE Pe3yJIbTaTOB TOUHOCTH
KJIacCHPUKALMH I KBAIH(PUIHPOBAHHBIX CHCTEM
(He3aBUCHMBII

U THOPUIAHBII pexnIM)

Positives

Minuses

EEG

» Low cost.

» Portable, non-invasive
and easy to use.

» Can provide high tem-
poral resolution of brain
activity.

» Low spatial resolution
due to wide distribution of
electrodes on the scalp;

» Susceptible to artifacts
related to eye movements,
muscle contractions, etc.,
which in some cases may
make data interpretation
difficult or impossible;

EMG

» Extremely high temporal
resolution as well as excel-
lent source localisation ca-

pabilities.

¢ Requires expensive
equipment to set up and
operate.

¢ Requires highly trained
personnel for proper cali-
bration and signal
processing.

¢ Susceptible to environ-
mental interference, such
as electromagnetic fields
generated by nearby elec-
tronics, which can distort
readings if not properly
shielded from these sources

Reference Accuracy or
and year Independent the average
e or hybrid Method &
of publica- value
. mode
tion of accuracy
Cross-cutting shal- o
[41], 2021 EEG low architecture 83.20%
[42], 2022 | EEG+NIRS Ve“‘"“y’;zse anal-le» o,89.87,86
[43],2022|  EEG Multiple built-in | g5 ;4o
transfer training.
fNIRS-guided
[44],2022| EEGHNIRS | attention network |78.59% =+ 8.86
(FGANet).
NN_LSTM,
[45], 2021 fNIRS NN_ConvLST, 91%
NN ResNet
FBCSP+PCA+SV
[46], 2023 | EEG+HNIRS M, 92.25.% +4.99
GLM+MBLL.
K Nearest Neigh- o
[47], 2020 fNIRS bors (KNN) above 90%
[48], 2017 | EMG+HNIRS SVM, LDA 86.4%
[48], 2017 EMG SVM,LDA 72.2%
96.4.% and
[49], 2021 | SEMG+NIRS LDA 04.1.%
[50], 2023 sEMG CNN-LSTM 70%:30%
[51], 2020 | SEMG+HNIRS LDA 78-81%

» Highly sensitive and ca-
pable of detecting changes
in oxygenated blood levels
at different depths of brain
tissue with good accuracy
when properly calibrated.

before taking measure-
ments.
fNIRS
» Portable and low cost » Lower temporal resolu-
compared to other IMC tion than that of EEG or
technologies. MEG systems, due to their

dependence on hemody-
namic reactions, rather than
on electrical signals direct-
ly from neurons.

» Not suitable for measur-
ing deep brain structures,
since it is based on the
transmission  of  light
through the bones of the
skull, which may be hin-
dered by thicker skulls or
dense bone structures such
as those of the elderly or
children under the age of 5,
respectively.

It is noted in Table 2, that the accuracy value ob-
tained by different methods, but we point to the evidence
of the superiority of the hybrid bionic control system.
For example, using SVM, LDA method, the accuracy
value obtained for the hybrid system is 86.4%, and in the
same method, the accuracy value obtained for the system
individually is 72.2%.

Discussion and results

An analysis of the scientific literature has shown that
all known and qualified methods for creating a hybrid
control system have fundamentally irreparable disadvan-
tages and today have significant limitations in their use
for controlling electronic prostheses when used with
independent immobilization. In this regard, the most
promising in the near future seems to be the use of em-
bedded control systems using neural interfaces based on
various physical principles. In these neural interfaces, the
disadvantages of one method are compensated by the
advantages of another. An example of such a combina-
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tion is the combination of fNIRS with EEG [44], and
fNIRS with EMG [49]. With this combination, the neural
interface is provided with a high response speed, with
high accuracy of recognition of mental commands.

There are successful examples of using such built-in
neural interfaces to control both electronic prostheses
[46, 48]. As a result and according to what has been
proven and documented by experimental scientific stu-
dies that have confirmed that the non-invasive hybrid
system is the superior system over its component sys-
tems. Qualified methods are characterised by the fact
that they are non-invasive, do not pose a risk to the lives
of healthy people or patients and can be applied safely
that makes them very useful in the field of prosthetics.
Unlike invasive neural interfaces, their use poses a risk
to people's lives.

Conclusion

Precise control of prostheses is one of the biggest
problems that currently exist in scientific fields. It is ex-
tremely difficult to measure brain activity and convert it
into commands for controlling machines and devices
using only thoughts. However, modern technologies
such as EEG, EMG and fNIRS techniques have inde-
pendently penetrated into this field and have achieved
some success. Each of these methods has its own charac-
teristics and disadvantages, which led to their insuffi-
cient effectiveness for controlling prosthetics. A hybrid
bionic control system based on these technologies can be
created as a solution to achieve higher efficiency of pros-
thetic control. In order to determine the task of creating a
neural network and train it to evaluate the application of
fNIRS in signal recognition, there are several types of
neural networks. For example, long short-term memo-
ry (LSTM), this is due to the fact that such a model al-
lows you to track the direction of changes in a time se-
ries due to the presence of short-term long-term memory,
but the essential thing remains to increase the accuracy
and adequacy of the neural network model is to collect a
larger data set.

It should be noted that future developments in the
creation of a hybrid artificial control system may not be
limited to fNIRS technique with one of the EEG and
EMG techniques. However, it may extend to other tech-
niques without fNIRS, but we are likely that fNIRS is
the most appropriate wiht the methods of EEG and
EMG. fNIRS has proven relatively successful in the
management of prostheses at the same time, fNIRS tech-
nology is most convenient in combination with EEG and
EMG that is confirmed by several recent studies. In the
future, this will serve as an incentive to search for these
methods independently of each other or in a hybrid form
since they are the closest and most convenient to elimi-
nate the shortcomings of each other, which will lead to
the creation of a successful hybrid bionic control system
for prostheses or rehabilitation and restoration of lost
functions.
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I'n6puaHast GMoHMUecKasi CHCTEMA YIPABJIeHUs POTe3aMu: 0030p

A. M. Camanoapu, actimpant, benropoackuii rocyiapcTBeHHBIH HAaIIMOHAIBHBIN HCCIIEI0BATENbCKUI YHUBEPCHUTET, benropon,

Poccus

A. H. Aporun, TOKTOp TEXHHYECKUX HAYK, npodeccop, beraropoackuii rocyrapcTBeHHbII HAIIMOHATBHBIN HCCIICA0BATEIbCKUI

yHuBepcurtet, bearopon, Poccus

Hozeu u pyKu Haubonee nO@BepJfCEHbl nomepe, U 5mo Ce;A3aH0 ¢ mem, YUmo OHU A6INAIOMCA 6blaai0M/;uMMC}l BHEUHUMU OpearHdMU

uenoseueckozo med. B ceasu ¢ yvacmuswumucsa kamacmpogamu, agapusmu, 80UHAMU U OONE3HAMU NOMepPs KOHeYHOCmell cma-
HOBUmMCs 6ce bonee Yacmot, Ymo Oendem Yelo8eKd 0SPAHUYEHHbIM 8 C80000e u nepedgudicenuu. Takum oOpazom, NOuck arbmep-
Hamue ONiA YAyYueHus JCU3HU Yenogexa ype3gvluatino eacet. Coepemennvle OUOHUYECKUE NPOME3bL AGIAIOMCA TyHulel anbmep-
HAMUBOT amMnymuposanbiM npomesam OJis 6bINOIHEHUS ICMEMUYECKUX U QYHKYUOHATbHBIX 3a0al. McXo0s u3z 9mo2o u ananusu-
pys Haubonee pachpocmpanenHvie U UCHONb3yeMble Memoobl NPOMe3uposanus, makue Kax snekmposuyeganoepagua (33I),
anekmpomuocpapus (OMT) u pynxkyuonarsnas cnexkmpockonus 6audicne2o ungparpacnozo ouanasona (fNIRS), 3nas ux npeumy-
wecmea u HeOOCMAMmKY, CPABHUBAS UX U OOKYMEHMUPYS UX Pe3YbMAmbl ¢ pe3yibmamamu IUmepanmypul u npeoslOyuux dKcnepu-
MEHMANbHBIX UCCIe008aHUT KAK NPU UHOUBUOYATLHOM, MAK U NPU 2UOPUOHOM UCHONIL306AHUU.

B ceeme amux OanHvbix 6 OaHHOU cmambve 8blOeNAIOMCA Hauboee pacnpoCmpaHentble MeXHOI02UU U PACCMAMPUBAIOMCS UX
npeuMyecmsa u HenpeoOoaUMAs Culd, KOmopbsie Mo2ym Oblmb NPUOOHbL 015 POPMUPOBAHUSL 2UOPUOHOT OUOHUYECKOU CUCTEeMbl
YApAGIeHUs NPOmMe3amu U peadbunumayuu u 60CCmManosnenus ympavenuvix gyukyuti. Ocnogano na Hauboee BaNCHbIX UCCIE00-
BAHUSX, KOMOPbIE KACATUCH SMUX MEXHONOSUT KAK N0 OMOENbHOCIU MAK U 8 UX 2uGpuoHom sude. Kpome moeo, sma cmamovs 0aem
obHadexcusaiowue NEPCneKmussl mem Kmo uHmepecyemes Hay4yHbIMu UCCIe008aHUAMY Ol USYUeHUs, CPAGHENUs, UOeHMUGUKa-
YU U XapaKxmepucmuKy npesocXooHblX 2UOPUOHBIX CUCEM, CEAZAHHBIX C CUCTNEMAMU YNPABTIEeHUs IK30CKeNEeMOM U, 8 YACMHOCMU,
npomesamu.

KioueBsble ciioBa: rudpuaHas Ononudeckas cucrema ynpasienus (rbCY), rubpunasie cucreMsl HHTEp(eiica MO3r-KOMITBIOTED
rcIMK, nefipounTepdeiicel, anekrpodnuedanorpadus (33I), snexkrpomuorpadus (OMI), dyHKIMOHATBHAS OMMKHIS HHOpa-

kpacHas criekrpockonus (fNIRS), nmpoTtesnposanue.
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