Stochastic Production Process Planning

Authors

  • S. I. Velikiy Kalashnikov Izhevsk State Technical University
  • M. M. Gorokhov Kalashnikov Izhevsk State Technical University; Federal State Institution Research Institute of the Federal Penitentiary Service of Russia
  • V. A. Tenenev Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2410-9304-2025-1-54-64

Keywords:

production schedule, statistical testing method, genetic algorithm, optimization problems, Stochastic planning

Abstract

Uncertainty is an unavoidable element in many practical production planning and scheduling environments. The problem is formulated as follows. There are many tasks. The task is understood as any type of work within the technological process. Many machines must be used to complete a particular task. The execution of each task on a machine is characterized by indefinite time. In accordance with the technological process, a technological route representing a sequence of machines is prescribed for each or for some works. For practical use, methods using genetic algorithms are used to support planning within the production system. The genetic algorithm belongs to the category of artificial intelligence. This is a very effective algorithm to find optimal or close to optimal solutions of an optimization problem. Due to the fact that discrete optimization methods, such as the branch and boundary method, are NP difficult, it is proposed to use a genetic algorithm that includes elements of the statistical test method to solve production planning problems withtiming uncertainty of tasks on process equipment. The genetic algorithm uses a flexible chromosome coding scheme. This scheme allows generation of valid solutions in all genetic operators: crosses, mutations and selection. This made it possible to obtain a solution with a lower value of the objective function compared to the method of encoding using Petri nets. The application of the normal distribution law of random work time values on machines leads to a distribution close to normal for finite time of the final operation. There is a linear relationship between the calculatedand given deviation levels. Final operation mean time is increased 1.54 times when deviation is being set as as .

Author Biographies

S. I. Velikiy, Kalashnikov Izhevsk State Technical University

Post-graduate

M. M. Gorokhov, Kalashnikov Izhevsk State Technical University; Federal State Institution Research Institute of the Federal Penitentiary Service of Russia

Doctor of Physics and Mathematics, Professor; Chief Researcher

V. A. Tenenev, Kalashnikov Izhevsk State Technical University

Doctor of Physics and Mathematics, Professor

References

Великий С. И., Горохов М. М., Тененев В. А. Задача производственного планирования с неопределенностью времени выполнения работ // Интеллектуальные системы в производстве. 2024. Т. 22, № 1. С. 48-55. DOI: 10.22213/2410-9304-2024-1-48-55.

Zhang J., Cai J. A. Dual-Population Genetic Algorithm with Q-Learning for Multi-Objective Distributed Hybrid Flow Shop Scheduling Problem//Symmetry 2023, 15 (4), 836; https://doi.org/10.3390/sym15040836.

Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, XiangyinMeng,Liansheng Tang. A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem // Expert Systems with Applications.Volume 205, 2022, 117796. Doi.org/10.1016/j.eswa.2022.117796.

Ronghua Chen, Bo Yang, Shi Li, Shilong Wang A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem // Computers & Industrial Engineering, Volume 149, November 2020. Doi.org/1016/j.cie.2020.106778.

Ensieh Ghaedy-Heidary, Erfan Nejati, Amir Ghasemi, S. Ali Torab. A simulation optimization framework to solve Stochastic Flexible Job-Shop Scheduling Problems - Case: Semiconductor manufacturing// Computers & Operations Research 163 (2024). Doi.org/10.1016/j.cor.2023.106508.

Tao L., Chen L., & Zhang G. Scheduling Stochastic Jobs - Complexity and Approximation Algorithms. Proceedings of the International Conference on Automated Planning and Scheduling, 31 (1), 2021, 367-375. Doi.org/10.1609/icaps.v 31i1.15982.

Sahar Habbadi, Brahim HERROU, Souhail SEKKAT. Job Shop Scheduling Problem Using Genetic Algorithms // Proceedings of the 5th European IEOM Rome Conference, July 25-28 2022, pp. 3050-3062. DOI 10446254/EU05.20220592.

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns and Ferdinando Fioretto. Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities // https: arxiv.org/abs/2307.13565.

Kim van den Houten, David M.J. Tax, Mathijs de Weerd. Learning from Scenarios for Repairable Stochastic Scheduling // Conference paper.Integration of Constraint Programming Artificial Intelligence and Operations Research. 21st International Conference CPAIOR 2024 Uppsala Sweden May 28-31, 2024. Proceedings Part II, pp. 234-242.

Richard Stec, Antonin Novak, PremyslSucha, ZdenekHanzalek. Scheduling Jobs with Stochastic Processing Time on Parallel Identical Machines// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), pp. 5628-5634. https://doi.org/10.24963/ijcai.2019/781.

Stéphane Dauzère-Pérès, Junwen Ding, Liji Shend, Karim Tamssaouet. The flexible job shop scheduling problem: A review // European Journal of Operational Research 314 (2024), pp. 409-432, journal homepage: www.elsevier.com/locate/ejor.

Шашихина О. Е., Чистякова Т. Б. Компьютерная система для оптимального планирования полимерных производств // Известия Санкт-Петербургского государственного технологического института (технического университета). 2021. № 59 (85). С. 94-100. DOI: 10.36807/1998-9849-2021-59-85-94-100.

Семенкина О. Е., Попов Е. А. Бионические алгоритмы решения иерархической задачи составления расписания при оперативном планировании производства // Вестник Московского государственного технического университета им. Н. Э. Баумана. Серия приборостроение. Московский государственный технический университет им. Н. Э. Баумана (национальный исследовательский университет) (Москва). 2019. № 3 (126). С. 46-63. DOI: 10.18698/0236-3933-2019-3-46-63.

Сочнев А. Н. Планирование производства на основе управляемой генетическим алгоритмом имитационной модели // Техника и технологии. 2021. № 14 (2). С. 233-243. DOI: 10.17516/1999-494X-0304.

Горовых И. И., Горовых С. Н. Гибридный подход к решению NP - сложных задач настройки производства: объединение метода ветвей и границ с генетическим алгоритмом // Молодой исследователь Дона. 2024. Т. 9, № 1 (46). С. 10-19. eISSN 2500-1779.

Семенов Г. Е., Кейно П. П. Применение математических моделей на основе генетических алгоритмов в задачах планирования сложных технических объектов // Прикладная информатика. 2019. Т. 14, № 2 (80). С. 56-62. DOI: 10.24411/1993-8314-2019-10005.

Шитов А. Е., Журавлев И. А. Исследование работы генетического алгоритма в процессе производственно-хозяйственной деятельности // Наукосфера. 2021. № 12-1. С. 236-240. DOI: 10.5281/zenodo.5788763.

Константинова А. Ю. Планирование производства промышленного предприятия на этапе реконструкции средствами искусственного интеллекта // Матрица научного познания. 2020. № 6. С. 71-76. ISSN 2541-8084.

Системный анализ, математическое моделирование и оптимизация процесса формирования производственного расписания обработки металлоконструкций / А. А. Большаков, Л. А. Слободянюк, О. Е. Шашихина, Я. А. Ковальчук // Вестник Технологического университета. 2021. Т. 24, № 7. С. 84-92.

Published

01.04.2025

How to Cite

Velikiy С. И., Gorokhov М. М., & Tenenev В. А. (2025). Stochastic Production Process Planning. Intellekt. Sist. Proizv., 23(1), 54–64. https://doi.org/10.22213/2410-9304-2025-1-54-64

Issue

Section

Articles