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Introduction 
owadays, reducing the human factor in flights 
is a common topic in aerospace applications, 
for making the loss of human lives and eco-

nomic costs as low as possible. As a consequence of this 
pursuit, there is an overwhelming interest in the Un-
manned Aerial Vehicles (UAVs). When there are suffi-
cient measurements the necessary states of an autono-
mous aerial vehicle can be estimated via the Kalman 
Filter (KF) [1]. Unmanned Aerial Vehicles (UAVs) fly 
at very low speeds and Reynolds numbers, have nonlin-
ear coupling and tend to exhibit time-varying character-
istics [1]. In order to control such vehicles it becomes 
necessary to design and develop robust and adaptive 
controllers and hence, identify the system. State and pa-
rameter estimation, which are an integral part of system 
identification, has been carried out on various flight data 
and simulations as evident from literature [2]. Some re-
searchers, presented attitude estimation algorithms based 
on Kalman filter such as SAKF [3] and RAKF [4], for 
UAV problems when noise statistical characteristics are 
unknown, and time-varying vibrations are the main dis-
turbance source, also for problems against sen-
sor/actuator fault of the system. Others papers presented 
the sliding mode and high-order sliding mode respec-
tively like an observer [5, 6] in order to estimate the un-
measured states and the effects of the external distur-
bances such as wind and noise. In [7], the unknown pa-
rameter of the quadrotor are identified using state 
estimation method with the implementation of Un-
scented Kalman Filter (UKF). Most researchers used 

estimation techniques to identify the parameters in un-
known systems, while some researchers [8, 12, 14] men-
tioned estimation in order to predict the signals.  The 
main objective is to estimate the altitude of the UAV, in 
order to use this estimated value as predictive feedback 
signals for UAV altitude stabilization. This value cannot 
be estimated using a single sensor because the fact that 
each sensor has its own problem [8]. The performance of 
the proposed KF is investigated using simulation for 
state estimation procedure of an Unmanned Aerial Vehi-
cle [4, 8]. The paper proceeds as follows. In Section 2 
the flight dynamics model of the UAV is given. In Sec-
tion 3, UAV state estimation and predictive control are 
proposed. In Section 4, the simulation is carried out fol-
lowed by a discussion. Section 5, gives a brief summary 
of the obtained results and concludes the paper. 

The UAV dynamics 
Newton-Euler equations were used. In order to make 

the modeling, some assumptions have been made, taking 
into consideration that the hexacopter is a rigid body and 
has a symmetrical structure. The motion can be decom-
posed into translational and rotational components. 
Therefore, the equations with respect to the body frame 
are as derived in [9] and [10]: 
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 (2) 

where m is the hexacopter’s total mass, tk  is the constant 
of aerodynamic force, g is the gravity constant, 

� �T
1 2 3dist d d dF F F F�  is the disturbance force along 

the axis, iT  and i�  (where i = 0…6) are the thrust and 
angular moments of the motors, , andx y zJ J J  are inertial 

moments of the rigid body along axes, rk  is the constant 
of aerodynamic moment, l is the distance from CG to the 
center motors, QC  is the motor’s torque coefficient, �  is 
the air density, A is the disc area, R is the disc radius, and 

� �T
1 2 3dist d d dM M M M�  is the disturbance moment 

along the axis. The equations of motion that govern the 
translational and rotational motion for the hexacopter with 
respect to the inertial (Earth) frame are [9, 10]: 

 � � � �T T.n
bE Bx y z C u v w� � ��� �� �� � � ���  (3) 

 � �T T
BE

S p q r� �� � � � � � 
� �
���� ���� � � �  (4) 

The angular position of the body frame with respect 
to the inertial one is defined by Euler angles: roll �, pitch 
� and yaw �. These together form the vector: 

� �T� � � � �  where and , ;
2 2
� �� �� �� �� �� �

� �, .�� �� �  

The inertial frame position of the vehicle is given by 
vector � �Tx y z� �  [9, 7, 10]. While, the angular 

velocity is defined by the vector � �T ,p q r� �  and 
the linear velocity is defined by the vector 

� �TV u v w�  in the body frame. The transformation 
from the body frame to the inertial frame is realized by 
using the well-known rotation matrix n

bC  defined in [1, 

9, 10], which is orthogonal and 
1T .n n b

b b nC C C
�

� �  In 
addition, the transformation matrix for angular velocities 
from the body frame to the inertial one is S as mentioned 
in [9, 10, 11]. The block diagram in Figure (1) shows the 
variables of the mathematical model of a hexacopter 
aircraft. 
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Figure 1. A mathematical model of Hexacopter 

UAV State Estimation and Predictive Control 
Large modeling errors may often appear when air-

craft maneuvers. In order to decrease modeling errors 
[11], Subspace identification method via principle com-
ponent analysis was used to identify a precise nonlinear 
model based on Kalman filter to estimate and predict the 
hexacopter’s altitude from flight data [8, 14]. The esti-
mated system is then used to cancel and minimize dis-
turbances on the aircraft, as shown in figure (2) where 
the left side clarify the simple model without predictive 

method while the right side shows how we used esti-
mated model as feedback to enhance the response of the 
aircraft altitude by canceling the disturbances. The Y(t) is 
the altitude of the aircraft, YX(t) is the disturbed altitude, 
X is the state space, u(t) is the control signal, e(t) is the 
error signal and r(t) is the altitude set-point. The effec-
tiveness of the proposed method is evaluated comparing 
the simulation results with flight test data [12, 13]. 

From figure (2) it is clear that in the simple method, 
PID control loops were implemented to control the alti- 
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tude and velocity of a UAV rotorcraft. The PID gains 
can be selected precisely before the flight. No accurate 
model existed at first research stages. Tuning gains on 
a flying platform can be difficult because poor gains 
yield poor stability characteristics [13], which can lead to 
potentially destructive crashes. Once a set of acceptable 
gains has been found, it is not less difficult to ensure that 
they are optimal. 

Simulation and Discussion 
A LabVIEW simulation was conducted by using 

Runge-Kutta 2 method with a fixed step of 0.05 sec. As 

shown in figure (3), it is clear that there is a long re-
sponse time in addition to chattering and a big over-
shoot. These problems are results of the nonlinearity 
nature of hexacopter as well as coupling characteristic, 
which requires nonlinear methods to enhance the re-
sponse. Predictive control technique was used in order 
to reduce the hexacopter problems, and the results were 
compared with those results taken from the simple 
method without inserting disturbances as shown in fig-
ure (2). Table shows the stability response of proposed 
controllers. 
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Figure 2. The proposed model of predictive control 

   
Altitude Signals of Hexacopter Control Signals Altitude Error Signals 

Figure 3 

Stability Response of Simple and Predictive Control 
Steady-State Error Response Time (S)  Controller 

-0.0.44 (m) 68 PID controller 
0.0097 (m) 23 Predictive Controller 

 
Conclusion 
A real and complex dynamic model was considered, 

which addresses the nonlinearity, time variance, under-
actuation, and disturbance. The controller's parameters 
were tuned using Ziegler-Nichols algorithm to get the 
best performance and avoid the occurrence of vibrations 
in the output variables of the flying object as possible. In 
this paper, simple method and predictive method were 
used in altitude control, the predictive technique guaran-
tees stability in presence of disturbances for nonlinear, 
coupled and underactuated systems compared with the 
simple method. 
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