На основе полученных результатов эксперимента методами математической статистики были определены коэффициенты степеней *а* и *b*, оценивающие влияние групп факторов на процесс заедания в спиродной передаче под принятое критическое значение критерия [19].

Предложенный нами критерий позволяет еще на стадии проектирования производить проверку передачи на склонность к заеданию поверхностей, а также оценивать и сравнивать по степени опасности влияния на возникновение заедания, как различные сочетания материалов для звеньев пары, так и различные смазочные материалы.

Библиографические ссылки

- 1. Гольдфарб В. И. Спироидные редукторы для работы в экстремальных условиях / В. И. Гольдфарб, В. Н. Анферов, Д. В. Главатских, Е. С. Трубачев. Ижевск, 2013. 159 с.
- 2. Гольдфарб В. И. Спироидные редукторы трубопроводной арматуры / В. И. Гольдфарб, Е. С. Трубачев, А. С. Кузнецов Е. В. Лукин, Д. Е. Иванов, В. Ю. Пузанов. М.: Вече, 2011. 222 с.
- 3. Генкин М. Д., Кузьмин Н. Ф., Мишарин Ю. А. Вопросы заедания зубчатых колес. М. : Изд-во АН СССР, 1959. 296 с.
- 4. Ковальков А. А. Проектирование механизмов подъемно-транспортных машин на основе спироидных передач с учетом теплового режима работы: автореф. дис. ... канд. техн. наук. Новосибирск, 2006. 98 с.
- 5. Веников В. А. Теория подобия и моделирования (применительно к задачам электротехники): учеб. пособие для вузов. М.: Высш. шк., 1976. 480 с.
 - 6. Там же.

Получено 29.01.2017

- 7. Евдокимов Ю. А., Гудима В. В., Щербаков А. В. Основы теории инженерного эксперимента: учеб. пособие. Ростов: Изд-во РГУПС, 1994. Ч. 1. Методы математического планирования эксперимента. 83 с.
- 8. *Коваленко Р. К.* Выбор критерия заедания зацепления в спироидной передаче // Фундаментальные и прикладные вопросы горных наук. 2016. С. 92–97.
- 9. *Генкин М. Д., Кузьмин Н. Ф., Мишарин Ю. А.* Указ. соч. 10. *Голего Н. Л.* Схватывание в машинах и методы его устранения. Киев : Техника, 1965. 231 с.
- 11. Дроздов Ю. Н., Туманишвили Т. И. Расчет на заедание по предельной толщине смазочного слоя // Вестник машиностроения. 1982. № 4. С. 19—24.
- 12. *Коровчинский М. В.* Основы теории термического контакта при локальном трении // Новое в теории трения. М.: Наука, 1966.
- 13. *Петрусевич А. И.* Основные выводы из контактногидродинамической теории смазки // Известия академии наук СССР. Отделение технических наук. -1951. -№ 2. -C. 209–223.
 - 14. Веников В. А. Указ. соч.
- 15. Евдокимов Ю. А., Гудима В. В., Щербаков А. В. Указ. соч.
- 16. Анферов В. Н., Коваленко Р. К. Выбор физической модели для исследования заедания в зацеплении спироидной передачи // Вестник Моск. автомобильно-дорожного гос. техн. ун-та (МАДИ). 2016. N 4(47). С. 33–39.
 - 17. Там. же.
- 18. Коваленко Р. К. К вопросу методики проведения испытаний спироидных передач на заедание // Научные проблемы реализации транспортных проектов в Сибири и на Дальнем Востоке: ІХ Междунар. науч.-техн. конф. «Политранспортные системы»: тезисы конференций. Новосибирск: Изд-во СГУПСа, 2016. С. 229—231.
- 19. Евдокимов Ю. А., Гудима В. В., Щербаков А. В. Указ. соч.

УДК 621.833

О. Н. Цуканов, доктор технических наук, доцент, Московский государственный технический университет им. Н. Э. Баумана

ВОПРОСЫ СИНТЕЗА ЗУБЧАТЫХ ПЕРЕДАЧ НА БАЗЕ ЭВОЛЬВЕНТНО-КОНИЧЕСКОГО ИСХОДНОГО ЗВЕНА В ОБОБЩАЮЩИХ ПАРАМЕТРАХ

бычно при синтезе зубчатых передач в качестве исходного звена принимается эвольвентное цилиндрическое зубчатое колесо, то есть проектировщики изначально привязываются к технологии изготовления, поскольку червячные фрезы, долбяки, шеверы и шлифовальные круги имеют цилиндрическую форму. Если же не привязываться к технологии изготовления, а исходить из главной цели синтеза — обеспечения наилучших качественных показателей зацепления, то в качестве исходного звена правомернее использовать эвольвентно-коническое зубчатое колесо (коническое по форме заготовки). Тогда эвольвентное цилиндрическое исходное звено будет являться его частным

случаем. Что же касается технологии изготовления тех и других колес, то их внешние эвольвентные профили зубьев предварительно формируются одним и тем же инструментом — червячной фрезой на одних и тех же зубофрезерных станках, а окончательно — эвольвентным цилиндрическим или эвольвентно-коническим шевером или червячным шлифовальным кругом [1]. Эта технология, как известно, сравнительно простая и высокопроизводительная, обеспечивающая высокую точность профиля. Эвольвентно-коническое колесо с внутренними зубьями может быть изготовлено на 3D-принтере, а окончательно его зубья могут быть сформированы в процессе обкатки эвольвентно-коническим шевером.

В различных комбинациях эвольвентно-конических зубчатых колес с эвольвентными и неэвольвентными цилиндрическими и коническими зубчатыми колесами можно реализовывать разнообразные схемы передач с наиболее благоприятными параметрами контакта зубьев, легко устраняя люфты выходных валов и компенсируя смещение пятна контакта при сборке и в процессе эксплуатации за счет соответствующего смещения конического колеса.

Эвольвентно-конические колеса использовались, в частности, при разработке редукторов для высокоскоростных и высоконагруженных судовых приводов [2], безлюфтовых передач внешнего зацепления [3] и планетарных цилиндроконических передач для высокоточных приводов следящих систем, например, для поворота антенн, сканирующих устройств, солнечных батарей и других объектов на Земле и в космосе [4].

Исходя из того что одной из актуальных задач машиностроения является задача создания высокоресурсных и высокоточных механизмов для различных, в том числе экстремальных, условий работы в широком диапазоне нагрузок и скоростей, решение вопросов синтеза зубчатых передач на базе эвольвентно-конического исходного звена является, безусловно, актуальной задачей.

Однако в научной литературе не рассматриваются вопросы синтеза зацеплений таких передач в обобщающих параметрах (без привязки к параметрам производящих контуров формообразующего инструмента), что не позволяет полностью раскрыть их геометро-кинематические возможности и определить наиболее благоприятный комплекс качественных показателей зацепления для заданных условий работы.

В монографии [5] автора статьи изложена теория синтеза неэвольвентных зацеплений на базе эвольвентного цилиндрического исходного (огибаемого) звена в обобщающих параметрах. Согласно этой теории при заданных значениях параметров схемы передачи сначала определяется предельная по заострению и интерференции зубцов (зубьев без переходных кривых) огибающего звена область существования зацепления в обобщающих координатах: текущий торцовый угол зацепления α_{tw} – текущий торцовый угол профиля зубца α_{ν} исходного звена (рис. 1). Эта область называется обобщенной областью существования зацепления (ООСЗ). Затем внутри этой области находится локальная область существования зацепления (ЛОСЗ), соответствующая наиболее благоприятному комплексу геометро-кинематических показателей (ГКП) зацепления (коэффициента перекрытия, приведенного радиуса кривизны контактирующих поверхностей зубьев, формы, размеров и положения площадки контакта, скорости и коэффициентов скольжения).

Параметры производящих контуров формообразующего инструмента определяются как функции обобщающих параметров зацепления. Иными словами, проектирование передач выполняется по схеме:

от качественных показателей зацепления и геометрических параметров передачи — к технологии изготовления и параметрам производящих контуров инструмента.

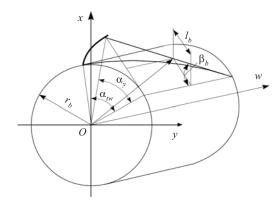


Рис. 1. К выводу уравнений поверхности зубцов исходного звена в обобщающих параметрах

Уравнения торцового профиля зубцов эвольвентно-конического колеса в обобщающих параметрах ничем не отличаются от уравнений торцового профиля зубцов эвольвентного цилиндрического колеса и имеют следующий вид:

$$x = r_b \cos \alpha_{tw} + l_b \sin \alpha_{tw};$$

$$y = r_b \sin \alpha_{tw} - l_b \cos \alpha_{tw};$$

где r_b – радиус основного цилиндра; l_b – линейный параметр, определяющий положение точки эвольвентного профиля зубца на нормали к нему (см. рис. 1).

Радиус r_b является обобщающим параметром, определяющим масштаб зубчатой передачи. Обычно синтез зацепления выполняется при единичном диаметре основного цилиндра $d_b = 1$.

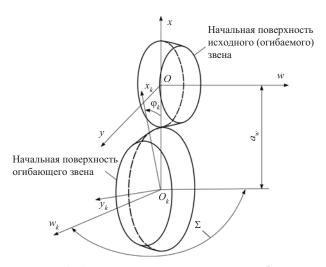
Линейный параметр l_b является функцией обобщающих параметров r_b и α_y , угла наклона линии зубца на основном цилиндре β_b и аппликаты w торцового сечения исходного звена (см. рис. 1):

$$l_b = r_b \tan \alpha_v - w \tan \beta_b$$
.

Здесь и далее параметрам исходного звена индекс не присваивается.

Уравнения поверхности зубцов огибающего, в общем случае неэвольвентного, конического звена находятся с использованием обобщенной схемы передач, представленной на рис. 2.

Сначала раскрываем векторное уравнение зацепления


$$\boldsymbol{e} \cdot \boldsymbol{V}_{0k} = 0,$$

где e — орт нормали к поверхности зубца исходного звена; V_{0k} — вектор скорости относительного движения исходного и огибающего звеньев.

Здесь и далее индекс k относится к огибающему звену.

Уравнения орта нормали e в неподвижной системе координат xOyw имеют следующий вид [6]:

$$\begin{aligned} e_x &= \cos \beta_b \sin \alpha_{tw}; \\ e_y &= -\cos \beta_b \cos \alpha_{tw}; \\ e_w &= \sin \beta_b. \end{aligned}$$

Puc. 2. К выводу уравнений поверхности зубцов огибающего звена

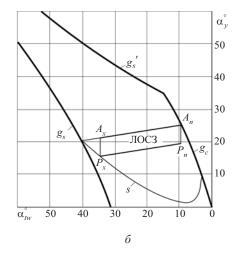
Используя уравнение скорости относительного движения, выведенное в [7], после преобразований с учетом принятых обозначений получаем следующее уравнение зацепления:

$$a_{lw}^{\circ}$$
 50 40 30 20 10 0

$$w = \left\{ \sin \beta_b \left(x + a_w \right) - \right.$$

$$-\cos \beta_b \cos \alpha_{tw} \left[x \left(i - \cos \Sigma \right) / \sin \Sigma - a_w / \tan \Sigma \right] \right\} /$$

$$/(\cos \beta_b \sin \alpha_{tw}) - y \left(i - \cos \Sigma \right) / \sin \Sigma,$$


где i — отношение угловой скорости исходного звена к угловой скорости огибающего звена; a_w — межосевое расстояние передачи; Σ — межосевой угол.

Используя матрицу перехода от системы координат xOyw к системе координат $x_kO_ky_kw_k$, получаем следующие уравнения поверхности зубцов огибающего звена:

$$\begin{aligned} x_k &= x \cos \varphi_k + y \cos \Sigma \sin \varphi_k - w \sin \Sigma \sin \varphi_k + a_w \cos \varphi_k; \\ y_k &= -x \sin \varphi_k + y \cos \Sigma \cos \varphi_k - w \sin \Sigma \cos \varphi_k - a_w \sin \varphi_k; \\ w_k &= y \sin \Sigma + w \cos \Sigma, \end{aligned}$$

где φ_k — текущий угол поворота огибающего звена; $\varphi_k = \varphi i$, φ — текущий угол поворота исходного звена.

На рис. 3 показаны возможные обобщенные и локальные области существования неэвольвентных зацеплений передач с пересекающимися осями, которые могут быть получены при их синтезе на базе эвольвентно-конического исходного звена с внутренними зубцами (рис. 3, a) и с внешними зубцами (рис. 3, δ).

Рис. 3. Возможные ООСЗ и ЛОСЗ передач с пересекающимися осями, синтезируемых на базе эвольвентно-конического исходного звена: a-c внутренними зубьями; $\delta-c$ внешними зубьями

Кривые s определяют точки заострения неэвольвентных зубцов огибающего звена по всей длине и называются локальными кривыми заострения, а граничные линии g_s , g_s' ООСЗ являются геометрическим местом их крайних точек, в которых $\alpha_y = \alpha_a$ углу эвольвентного профиля зубца на окружности вершин. Точки интерференции основания неэвольвентного зубца с вершиной эвольвентного зубца исходного звена определяет граничная линия g_c ООСЗ.

ЛОСЗ ограничивается отрезками прямых A_xA_n и P_xP_n , соответствующих верхним и нижним точкам активных профилей зубца исходного звена, A_xP_x и A_nP_n , определяющих положение крайних торцовых

сечений, в которых угол зацепления достигает максимального и минимального значений соответственно.

При синтезе неэвольвентных зацеплений на базе эвольвентно-конического исходного звена в обобщающих параметрах вопрос заключается в выборе зависимости угла профиля зубца на окружности вершин от торцового угла зацепления, определяющей форму образующей поверхности вершин.

Поскольку никаких исследований по этому вопросу не проводилось, то выбираем наиболее простую – линейную зависимость α_a от α_{tw} (см. рис. 3).

Одно из экстремальных в пределах ЛОСЗ значений α_{ax} в торцовом сечении исходного звена, в кото-

ром угол зацепления достигает максимального значения (на рис. 3 — точка A_x), варьируется с целью получения наиболее благоприятного комплекса ГКП для заданных условий работы передачи. Соответствующий радиус окружности вершин исходного звена $r_{ax} = r_b/\cos\alpha_{ax}$ [8]. С использованием этой же формулы находится второе значение ординаты α_{an} в торцовом сечении исходного звена, в котором угол зацепления достигает минимального значения в пределах ЛОСЗ (на рис. 3 — точка A_n), а именно α_{an} = $\arccos(r_b/r_{an})$, где r_{an} — соответствующий радиус окружности вершин зубцов исходного звена. Очевидно, что $r_{an} = r_{ax} + b$ сtg δ_a , где b — ширина зубчатого венца; δ_a — угол конуса вершин заготовки.

Предварительные значения b и δ_a принимаются исходя из технического задания с учетом результатов синтеза зацеплений аналогичных конических и цилиндроконических зубчатых передач традиционным методом (на базе стандартного исходного контура по ГОСТ 13755–81).

Анализ вышеизложенного позволяет сформулировать следующие способы управления качественными показателями зацепления на стадии синтеза:

- 1) путем изменения значения угла конуса вершин заготовки исходного звена;
- 2) путем изменения относительного расположения вершин и значений углов начальных конусов звеньев (см. рис. 2);
- 3) путем изменения значений обобщающих координат определяющей точки ЛОСЗ (точка A_x на рис. 3);
- 4) путем изменения формы отрезка граничной линии ЛОСЗ, соответствующей точкам образующей Получено 23.01.2017

поверхности вершин зубцов огибающего звена, и значений обобщающих координат его крайних точек (точки P_x , P_n на рис. 3).

Таким образом, использование эвольвентно-конического исходного звена расширяет диапазон управления комплексом ГКП зацеплений с целью повышения прочности, плавности и ресурса работы зубчатых передач.

Библиографические ссылки

- 1. *Лопатин Б. А.*, *Цуканов О. Н.* Цилиндроконические зубчатые передачи. Челябинск : Изд. центр ЮУрГУ, 2005. 200 с.
- 2. Безруков В. И., Карманов В. С., Цуканов О. Н. Нагружающее устройство для стендовых испытаний высокоскоростных и тяжелонагруженных редукторов // Развитие конструкции и производства зубчатых передач : тез. докл. научн.-техн. конф. Свердловск : Изд-во УПИ, 1989. С. 45—46.
- 3. Безруков В. И., Лопатин Б. А., Казарцев Д. Н. Применение эвольвентно-конических колес в безлюфтовых передачах // Совершенствование машиностроительных материалов, конструкций и методов обработки деталей: сб. науч. тр. Челябинск: Изд-во ЧПИ, 1995. С. 40–44.
- 4. *Цуканов О. Н.*, *Лопатин Д. Б.*, *Полуэктов Е. А.* Электромеханический привод для механизмов углового поворота объектов космической техники // Вестник машиностроения. 2009. № 2. С. 14–16.
- 5. *Цуканов О. Н.* Основы синтеза неэвольвентных зубчатых зацеплений в обобщающих параметрах : монография. Челябинск : Изд. центр ЮУрГУ, 2011. 140 с.
 - 6. Там же.
- 7. *Литвин Ф. Л.* Теория зубчатых зацеплений. М. : Наука, 1968. 584 с.
 - 8. Цуканов О. Н. Указ. соч.

УДК 621.83.06

М. Е. Лустенков, доктор технических наук, доцент, Белорусско-Российский университет, Могилёв, Республика Беларусь **Е. С. Лустенкова**, аспирант, Белорусско-Российский университет, Могилёв, Республика Беларусь

ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СФЕРИЧЕСКИХ РОЛИКОВЫХ ПЕРЕДАЧ

азработка новых конструкций механических передач, активизировавшаяся в начале XX в., была связана с развитием средств производства, технологий и стремлением передать возрастающие мощности при одновременном снижении массы и габаритов привода. Механизмы с промежуточными телами качения привлекли внимание исследователей благодаря низкой материалоемкости вследствие множества параллельных потоков передачи мощности и перспективам замены скольжения качением в контактирующих парах.

Множество созданных конструкций передач с промежуточными телами качения (ППТК) можно

классифицировать по виду поверхности, на которой располагаются траектории центров шариков (роликов). Так, эксцентриковые передачи [1], получившие наибольшее распространение [2], относятся к плоскому типу. Цилиндрический тип ППТК целесообразно применять для передачи мощности в пространствах с ограниченными радиальными размерами (для работы в трубах, скважинах и т. д.) [3].

Передачи сферического типа до настоящего времени мало исследованы. Длительное время их разработка сдерживалась сложностью изготовления пространственных беговых дорожек и кулачковых профилей, хотя варианты конструкций создавались