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OBTAINING THE KINEMATICS SOLUTION OF AN AERIAL MANIPULATOR
USING THE SHUFFLED FROG-LEAPING ALGORITHM

I. N. Ibrahim, PhD Student, Kalashnikov ISTU, Izhevsk, Russia

This paper concentrates on deriving the real-time kinematics solution of a manipulator attached to an aerial vehi-
cle, while the vehicle's movement itself is not analyzed. The manipulator kinematics solution using Denavit-
Hartenberg model was introduced, too. The fundamental scope of this paper is to get a global online solution of the
design configurations with a weighted objective function subject to some constraints. Adopting the resulted forward
kinematics equations of the manipulator, the trajectory planning problem turns into an optimization task. Several and
well-known computing methods are documented in the literature for solving constrained complicated nonlinear func-
tions, where in this study a shuffled frog-leaping algorithm (SFLA) is suggested, which is one of the artificial intelli-
gence techniques and regarded as a search method. It is a constrained metaheuristic and population-based approach.
Moreover, it is able to solve the inverse kinematics problem considering the mobile platform, in addition to avoiding
singularities, since it does not demand the inversion of a Jacobian matrix. Simulation experiments were carried out
for the trajectory planning of a six degree-of-freedom (DOF) aerial manipulator, and the obtained results confirmed
the feasibility and effectiveness of the suggested method.
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Introduction
r I \ he inverse kinematics (IK) solver is a pri-

mary problem in robotic manipulation, par-

ticularly when demand real-time and preci-
sion in calculations. Mathematically, the numerical
solution of kinematics is intricate because of the
high degree of nonlinearity. furthermore, the Linear
and dynamic programming techniques usually fail
or reach local optimum in solving NP-hard prob-
lems with a large number of variables and non-
linear objective functions. moreover, Traditionally
Jacobian-based solutions are identified to scale in-
adequately with the high number of degrees of free-
dom (DOF) [1] in addition to singularities exis-
tence. In contrast [2] presented a comparative study
of several methods based on the Jacobian matrix,
clarifying that the modified Levenberg-Marquardt
method is much better for a quite large set of ran-
dom configurations than others but may lose con-
vergence compared to Jacobian transpose and
Pseudocode inverse methods. recently many re-
searchers [3] proposed a new method for solving
real-time IK without using the Jacobian matrix
based on the position of end-effector (ee), using
numerical and analytical mathematical tools but not
mentioned exactly the performance as the time con-
suming to get the solution, in [4] also applied alike
method for (2n + 1) DOF hyper-redundant manipu-
lator arm. Authors in [5] combined two methods as
a real-time IK solver for a human-like arm manipu-

lator based on closed-form analytical equations for
a given position while others [6] presented an on-
line adaptive strategy based on the Lyapunov stabil-
ity theory in addition to Radial Basis Function
Network (RBFN) and quadratic programming
which requires a complex hardware resources, the
simulation was done for the position of ee in addi-
tion to avoid obstacles and was conducted on the
7-DOF PA-10 robot manipulator. In [7] a kinematic
and time-optimal trajectory planning was consid-
ered for redundant robots, two approaches were
presented, joint space decomposition and a numeri-
cal null-space method for a given pose. They were
tested by 7-DOF industrial robots and demand high
consuming time for resolving IK. Nowmetaheuris-
tic optimization algorithms are an encouraging al-
ternative approach to traditional IK techniques due
to their strong performance on challenging and
high-DOF problems in many various domains, the
solution can be solved by minimizing an objective
function. [8, 9] proposed an SFLA and MSFLA
respectively, that for a high dimensional continuous
function optimization. These methods yield a strong
robustness and best convergence also presented
a comparative study for PSO, SFLA, MSFLA, and
MSFLA-EO. Which designated that MSFLA is bet-
ter than others. In [10] a modified SFLA was as-
sumed for obtaining the optimum preventive main-
tenance scheduling of generating units in power
system. While [11] presented a comparative study
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among five evolutionary-based optimization algo-
rithms as GA, MA, PSW, ACO, and SFLA, they
presented the processing time for solving the F8
function and concluded that the SFLA is the best.
This work is considered as an extension of work in
[12-15]. The proposed algorithm isthe modified
shuffled frog-leaping algorithm (MSFLA), which is
characterized as accurate and fast converging in
discovering the solution based on the previous lit-
erature study. Initially, we define an objective func-
tion to minimize the error between the desired and
the actual end-effector pose. The objective function
considers the minimal movement between the pre-
vious and the actual joint configurations. To over-
come the constrained problems, we use a penalty
function to penalize all those manipulator configu-
rations that violate the allowed joint boundary.
Hence, the proposed approach estimates the feasi-
ble manipulator configuration needed to reach the
desired end-effector pose. The remainder of this
paper is organized as follows: Section 2 present the
architecture and kinematics of a robotic manipula-
tor. Sections 3 and 4 introduce metaheuristic opti-
mization algorithm MSFLA and the weighted ob-
jective function. Section 4 shows the simulation
results of the proposed trajectory planning method
applied to the manipulator.

Manipulator Kinematics

In order to determine the relationship between
the coordinate frames, which are assigned to ro-
bots’ links and joints, homogeneous transforma-
tions are required. Three parameters are employed
to describe the rotation while another three parame-
ters are used to define the translation. Accordingly,
the Denavit-Hartenberg (DH) convention was used
to describe kinematically the rigid motion by as-
signing the values of four quantities for each link,
two describe the link itself, and two describe the
link's connection to a neighboring link. Where 6, a,
d and o are the joint angle, link length, link offset
and link twist between joints. While 7; is the homo-
geneous transformation matrix between the frames
that is a function of 0 while the other three parame-
ters are constant. The data in Table 1 represent link
parameters of the arm-part based on DH strategy in
two formulas: standard and modified DH. Whereas
the standard simulation form of LabVIEW Robotics
module was used, in order to validate the design.
The position of all links of an arm-part manipulator
can be specified with a set of 6 joint variables from
the shoulder's joints till wrist's joints. This set of
variables is often referred to as a 6x1 joint vector
[12].

Table 1. Link parameters of the manipulator’s arm-part

Modified denavit hartenberg Standard denavit hartenberg

oy | a@q[em] | di[em] | 0; | Initial value of 0; o a;[cm] | d;[cm] | O; | Initial value of ©; | Joint offset
—TE/Z I 0 6, 71',/2 —TE/Z 6.4 0 0, 0 0

/2 A 0 0, -n/2 0 30.2 0 0, -n/2 -n/2

0 A 0 0, -r/2 /2 0 0 0, /2 /2

2| 0 | L+l |6, 0 w2 | 0 | 235 |, 0 0

/2 0 0 0, -n/2 -n/2 | 53 0 0, /2 /2
-n/2 IA 0 0, 0 0 5.6 -2 0, 0 0

The space of all joint variables is referred to as
the joint-space ®=[91,92,...,96]T. Here we have
been concerned with computing the Cartesian space
representation from the knowledge of the joint-
space information. Hence the homogeneous trans-
formations of the links were used 7. If the ro-
bot’s joint-position sensors are estimated by servo-
mechanisms, the Cartesian position and orientation
of the hand-part can be computed by 7 [12].

Proposed Optimization Techniques

for solving kinematics

The evolutionary optimization algorithms can
solve the complicated nonlinear equations com-
pletely and efficiently. The solution of the inverse

kinematics for the manipulator is a very difficult
problem to obtain by traditional approaches. Be-
sides, the suggested strategies do not require the
inversion of any Jacobian matrix, and then it avoids
singularities configurations. In this paper, two algo-
rithms are used to optimize this problem, the differ-
ential evolution and the modified shuffled frog-
leaping algorithms. In general, this optimization
technique is based on the forward kinematics equa-
tions, which always produces a solution in coopera-
tion with an objective function. Hence, the general
aspect of the problem can be expressed as minimiz-

ing J (@), constrained by ® , <®<O_ . Fur-
thermore, the objective function could be defined as
the weighted sum of the errors as follows
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J(®)=0P,, (0)+£0,,,(0)=
= o[£, - P, (0)] +&0s -0, (6.

Where P, (©) and O

o (©) Tepresent the posi-
tion and orientation errors respectively and could be
computed as a difference in distance between the
target and current position, in this work we used an
Euclidean formula as a representation of distance.
While the parameters ¢ and € are the weights of the
position and the orientation, respectively. Let

G=(PG,OG) be a given target end-effector pose
while £(©)=(P,(©),0,(0)) is the current end-

effector pose in the workspace corresponding to
configuration ® =[0,,0, ...0,]" which can be cal-

culated using forward kinematics, where P refers to
the 3D position vector of pose while O refers to the
vector of Roll-Pitch-Yaw Euler angles of pose (in
radians), respectively. Which the optimization algo-
rithms are exploring directly in the configuration
space of the manipulator. Hence, each individual

0,=[6,,,6,,...6,, ...0,¢]" represents an i-th can-

didate set of joint angles. Henceforward, at each
iteration, we evaluate each candidate configuration
O, by passing it through the forward kinematics

module and measuring the position and orientation
error between where the end-effector would be at
configuration ®, and the target end-effector pose.

In order to enforce joint limits, each dimension j of
element ®, should be limited to searching in the

®,,.]. This

can be realized by clamping each dimension j
within these bounds at each iteration immediately
after it is updated.

Modified Shuffled Frog-Leaping Algorithm

The shuffled frog-leaping algorithm (SFLA) was
developed by Eusuff and Lansey in 2003 [8]. It is
a member of the Memetic algorithm family, a par-
ticular type of meta-heuristic optimization ap-
proaches and evolutionary algorithms, which is
based on population. It is inspired by the memetic
evolution of frogs exploring food in a lake, which
consolidates the benefits of the genetic-based me-
metic algorithms (MAs) and by the social behavior-
based particle swarm optimization [9]. generally,
the SFLA incorporates two alternating processes:
alocal exploration in the sub-memeplex and
a global information exchange among all meme-
plexes.The SFLA optimization achievement basi-
cally relies on two facts, the first one is the evolu-
tion process on each memeplex that embraces dif-
ferent cultures of frogs, where the culture

range of valid joint angles O, e[@

min ?

stimulates a fitness value, and serves as a local
search within memeplex analogous to PSO algo-
rithm which imitates the social behavior of the
leaping action of frogs searching for food. The sec-
ond fact is an idea held within each frog which can
be influenced by the ideas of other frogs from other
memeplexes throughout the shuffling rule, this
animates the cooperation process which it implies
an adaptation idea and improves the success rate of
discovering the solution in the optimization puzzle.
In this process, a modification was applied to the
frog-leaping action that enhances the exploration
manner in the space [10, 11]. Moreover, the ran-
domization strategy in the evolution process prof-
fers the algorithm the ability to discover the local
best solution within search space stochastically in
addition to the communication process that possibly
finds a global optimum solution in shorter time.
The local search and the shuffling processes con-
tinue until the defined convergence criteria are sat-
isfied. The pseudocode of the algorithm is pre-
sented in Algorithm 1.

The MSFLA meta-heuristic strategy is summa-
rized in the following steps:

a. Initialization step, construct the population
NP of frogs randomly similar to the first step in DE
algorithm, then Select m, and n, where m is the
number of memeplexes and n is the number of
frogs in each memeplex. Therefore, the total
amount of frogs NP can be calculated as NP = m.n,
additionally, the i™ frog is expressed as a vector
with a dimension equal to the configuration space

as follows ©, = (9111, 0,5, Oiﬂé); i=12,..., NP.

b. Rank step, compute the performance value f,
for each frog ®,. Sort the NP frogs in a descending
order according to their fitness. Save them in an
array Uz{fl.,®i; i=1, 2,...,NP}, so that i = 1
denotes the frog with the best performance value
and could save it as a ®, in each iteration while the
algorithm is running.

c. Partition Step, partition array U into m meme-
plexes Y. Y,,...,Y , each including n frogs, such
that

k_ k gk k_
V' =[0). 1110/ =0 ),
k . . —
Ji = Jkemiorys 1=1,...,n], k=1,...,m.

In this process, the first frog goes to the first
memeplex, the second frog goes to the second me-
meplex, frog m goes to the m™ memeplex, and frog
m + 1 goes back to the first memeplex, etc.

d. Memetic Evaluation step, evolve each meme-

plex Y*;k=1,...,m according to the frog-leaping
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algorithm as follow. Within each memeplex, the
frogs with the best and the worst fitness values
are defined as ©, and O,, respectively. Fur-
thermore, the frog with the global best fitness is
defined as ©,. Next, an improvement process is
applied to only the frog with the worst fitness in
each cycle. Hence, the position of the frog with

the worst fitness is modified which emulates the
leaping process as follows: leaping distance

D=C,rand(0,1)[®,-0,], then new position
®w = ®w + D’ D E] _Dmax’Dmax[' Where’ rand((),l)
is the

maximum allowed change in a frog’s position and
C, is the modification of the algorithm which it is

is a random number between 0 and 1, D_,

a constant indicates the amount of frog-leaping in
each memeplex. The evaluation process, for all

memeplexes, is repeated by an adaptable number of
iterations iM, until no improvement becomes pos-
sible.

e. Shuffle Memeplexes Step, shuffle frogs and
replace all memeplexes Y k=1,...,m into U,

such that U = {fi,G)l.; i=L2,..., NP} similar to the

initialization phase, afterwards sort U in order to
decrease the performance value, update the popula-
tion best frog’s position @,.

f. Check convergence, check the convergence
criteria if satisfied then stop otherwise return to the
partition step and continue for a specific quantity of
iterations iN, finally after each iteration the first
frog in the sorted list represents a global solution.
The number of iterations iM specifies the depth of
search within memeplexes while iN governs the
solution producing process.

Algorithm 1. The pseudo-code of the Shuffled Frog-Leaping Algorithm

Initialization:

Population < {©,,0,,...,0,,...,0,,1};
m <— number ofmemeplexes;

n < quantity of  frogs in each memeplex;
[ < 1,iN

while (convergence criteria is satisfied Or until met iN) do
Rank Step: Evaluate each frog ®, using a fitness function;

Partition Step:
Construct an array U of frogs and their fitness’s values;

Sort the array U in descending order based on the fitness column;
Construct (Y*;k =1,..., m) memeplexes each including n frogs;

Evaluation Step:
for < 1,iM do

for k< 1,mdo

Determine the worst and best frogs position based on their fitness’s values;
Improve the worst frog position using a leaping distance;

end for
end for

Shuffle Memeplexes Step: combine the evolved memeplexes;
Check Convergence: Update the population best frog’s position @ ;

[« 1+1;
end while

Simulation Results and Discussions

In this work, we solved the inverse kinematics
of a redundant manipulator with six joints to follow
a destination pose. The manipulator’s joints corre-
spond to the variable 9]. :j=12,...,6 are con-

strained. The DH table is presented in Table 1. In
the inverse kinematics experiments, the desired
end-effector pose for the arm-part of the manipula-
tor was determined by this vector

G=(P,;,0,)=(x,y,z,roll, pitch, yaw) =

=(-20,3,40,0,10,15).

Moreover, the parameters of the objective func-
tion were adjusted as follows e=1-6=0.7, so
there is a balance between position and orientation
to be optimized. In case of MSFLA, the parameters
of the algorithm were introduced in Table 2, and

a summary of the results of utilizing the algorithm
for multiple scenarios was introduced in Table 3.
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Table 2. Setting of the MSFL Algorithm

m Number of memeplexes 3
n Number of frogs within memeplexes NP/m
C Amount of Leaping 1.3

Table 3. Inverse Kinematics Results of MSFL Algorithm

Hereafter, Fig. 1 displays the values of the ob-
jective function, while Fig. 2 and Fig. 3 represent
the position and orientation of the manipulator’s
end-effector after applying the solutions to validate
IK solver.

Tests| Population (S0 J(0) | el | BxeeonTine ool i v
1 20 30| 10 | 11.618 | 29.71 729 (—15.7365,5.43,52.57,6.63,12.66,16.164)
2 30 30 | 10 | 7.6614 | 12.08 1045 (—21.183,2.915,50.77,-0.201,10.01,14.85)
3 40 30 | 15 | 10.5382 | 19.21 1685 (~25.08,8.56,46.818,—6.2,9.6,5.4251)
4 40 |40 |30 | 18.4625 | 18.46 4526 (—25.23,8.34,47.59,-2.53,8.62,14.13)
5 60 |40 |30 | 82925 | 8.292 6645 (—24.46,0.0421,44.59,1.65,11.116,14.05)
6 80 50 | 40 | 11.024 | 11.02 13540 (—26.998,3.594,42.87,-0.068,9.81,15.67)
7 100 |60 | 60| 29.774 | 29.77 24191 (~20.03,30.039,39.971,—7.71,3.679,-0.72)
8 130 |70 | 60 | 0.1511 | 0.649 46282 (=20.09,2.99,40.004,0.208,9.64,14.89)
9 170 | 60 | 50 | 0.6168 | 2.168 40459 (—20.151,2.84,40.09,0.89,10.36,16.15)
10| 200 |90|40| 0.1139 | 0.298 57362 (~19.927,3.0072,39.98,—0.134,10.105,14.89)
11 200 [100| 60 | 0.0729 | 0.378 92779 (~20.002,2.998,39.99,—0.137,10.151,14.92)
12 | 200 [120]80 | 2.7672 | 5.8164 150246 (—20.48,4.153,40.49,0.807,4.087,13.787)
13 | 200 [200]100| 2.6713 | 1.9339 318481 (~19.27,2.235,41.94,-0.979,10.88,11.48)
14 | 250 |90 |40 0.003 | 0.016 69818 (~19.99,3.00023,39.99,0.0049,10.006,14.99)
15| 250 |140| 80 | 1.266 | 6.553 215027 (=20,3,40,-7.01976e —10,10,15)
16 | 250 [140|100|4.647¢-9| 1.05¢-8 260325 (—20.09,2.97,40.0008,—1.687,6.689,13.57)
17 | 300 |140| 80 | 1.01e-9 | 3.33¢-9 255989 (=20,3,40,1.16487¢ —9,10,15)
18 | 500 | 90|40 |5.49¢-10| 9.9¢-10 136888 (-20,3,40,-1.66261e —11,10,15)
19 | 500 |200100]3.02¢-15]| 1.56¢-14 681646 (=20,3,40,3.22962¢ —15,10,15)
20 | 1000 |30 | 45| 0.0968 | 0.025 95197 (~20.031,3.04,40.04,-0.0037,10.96,14.876)
6E-009 == 60

i 40 ==
m 4E-009 == 'E‘ ] Positions
= i 2 i =z
é z
£ 2o
2E-009 == nC:

i =20

T T T v T T T T

1484 1488 1492 1496 1500

Time [s]

1476 1480

Fig. 1. The objective function values after
applying IK-MSFLA solver

Time [s]

Fig. 2. The end-effector position of the manipulator after
applying the solutions to validate IK-MSFLA solver
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40 ==

Orientation Angles [deg]

Time [s]

Fig. 3. The end-effector orientation of the manipulator
after applying the solutions to validate IK-MSFLA solver
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Kunemaruueckoe peumieHue it MaHUIYJIsiTOpa 0eCNUJIOTHOIO JIETATEJILHOI0 anmapartra Ha OCHOB€

MOJII/Iq)I/lIII/lpﬂBaHHOFO AJITropuT™Ma NMpPbIKKA JIATYIIKA

Y. H. Uopaxum, actupanT, VK[ TY umenn M. T. Kanamuukosa, Nxesck, Poccust

Paccmompeno xunemamuueckoe peuienue 8 peanbHOM 6peMeHy ONsl MAHUNYIAMOPA, NPUKPENIeHH020 K becnu-
JIOMHOMY JIemamenvHOMY annapamy; 08UdICEHUEe CamMo20 MPAHCNOPMHO20 CPeOCmea 8 OAHHOM UCCIe008aHUU He AHA-
ausupyemcs. [Ipeocmasnennoe Kunemamuyeckoe peuteHue 0N MAHUNYIAMOpPA OCHO8AHO HA Modenu [enasuma —
Xapmenbepea. OcrnogHOU Yenblo UCCIe008AHUA ABNACMCS NONYUeHUe 2I00ANbHO20 PEeUEeHUs 8 PeaTibHOM 8PEMeHU Ol
KOH@uesypayuu u npoekmuposanius ¢ 636eUeHHOl Yenesou yHKyuell ¢ HaiodlceHueM HeKomopuix ozpanuienui. Ipu-
MeHeHue YpasHeHUl NPAMOU KUHeMAMUKU MAHURYJIAmMopa, ROJYYEHHbIX 6 pe3ylbmame Uccie008aHus, No360Jem
npeepamumy 3a0ayy NIAHUPOBAHUS MPAEKMOPUU 6 3a0aiy OnmumMusayuu. Xopouio u36ecmubl HeCKOIbKO MUno 6bi-
YUCTUNENLHBIX MEMO008 0I5l PeUEHUs OSPAHULEHHBIX CLONCHBIX HETUHEHBIX (DYHKYUI.
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B oannom uccnedosanuu npeonracaemcs moouguyuposanusiii areopumm npuvixcka aaeywiku (SFLA), komopulii s6-
JISIemCst OOHUM U3 MEMOO08 UCKYCCMBEHHO20 UHMEIEKMA U PACCMAMPUBAEMCsL KAK Memo0 ROUCKAd. Dmo 02paHuyeH-
HbIIL MeMadsspucmudeckuti u nonyaayuoHusll nooxoo. C e2o nomoubio npedCmasiiemcs 803MONCHbIM peuieHue 00-
PAmHOU KUHeMAamu4eckol 3a0aiu ¢ yyemom moobunvHocmu niamgopmoi. Kpome moeo, dannwiti memoo npedomsepa-
waem nosiGneHUe CUHRYISPHBIX MOYEK, NOCKOAbKY OH He mpebyem uneepcuu mampuyvl Hxobu. Pezyromamul
IKCNEPUMEHMANLHO2O MOOETUPOBAHUS OISl NIAHUPOBAHUS MPAEKMOPUU MAHUNYTIAMOPA C WeECmbl0 CIENeHAMU C80-
6006l NOOMEePOUNU YeLeco0bPAZHOCHb U IPHEKMUSHOCb NPeONacaemMo20 Memood.

KiaroueBble ciioBa: MaHHUITYJIATOP, 06paTHa${ KHHEMATHKa, MCTA3BPHUCTUYCCKHUE MCTO/bI, 3BOJ'IIOHI/IOHHLII>1 AJITOPUTM,
METOABI OITUMHU3ALNH, aJITOPUTM NMPBDKKA JIATYIIKH.
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