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This paper concentrates on deriving the real-time kinematics solution of a manipulator attached to an aerial vehi-
cle, while the vehicle's movement itself is not analyzed. The manipulator kinematics solution using Denavit-
Hartenberg model was introduced, too. The fundamental scope of this paper is to get a global online solution of the 
design configurations with a weighted objective function subject to some constraints. Adopting the resulted forward 
kinematics equations of the manipulator, the trajectory planning problem turns into an optimization task. Several and 
well-known computing methods are documented in the literature for solving constrained complicated nonlinear func-
tions, where in this study a shuffled frog-leaping algorithm (SFLA) is suggested, which is one of the artificial intelli-
gence techniques and regarded as a search method. It is a constrained metaheuristic and population-based approach. 
Moreover, it is able to solve the inverse kinematics problem considering the mobile platform, in addition to avoiding 
singularities, since it does not demand the inversion of a Jacobian matrix. Simulation experiments were carried out 
for the trajectory planning of a six degree-of-freedom (DOF) aerial manipulator, and the obtained results confirmed 
the feasibility and effectiveness of the suggested method. 
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Introduction 
he inverse kinematics (IK) solver is a pri-
mary problem in robotic manipulation, par-
ticularly when demand real-time and preci-

sion in calculations. Mathematically, the numerical 
solution of kinematics is intricate because of the 
high degree of nonlinearity. furthermore, the Linear 
and dynamic programming techniques usually fail 
or reach local optimum in solving NP-hard prob-
lems with a large number of variables and non-
linear objective functions. moreover, Traditionally 
Jacobian-based solutions are identified to scale in-
adequately with the high number of degrees of free-
dom (DOF) [1] in addition to singularities exis-
tence. In contrast [2] presented a comparative study 
of several methods based on the Jacobian matrix, 
clarifying that the modified Levenberg-Marquardt 
method is much better for a quite large set of ran-
dom configurations than others but may lose con-
vergence compared to Jacobian transpose and 
Pseudocode inverse methods. recently many re-
searchers [3] proposed a new method for solving 
real-time IK without using the Jacobian matrix 
based on the position of end-effector (ee), using 
numerical and analytical mathematical tools but not 
mentioned exactly the performance as the time con-
suming to get the solution, in [4] also applied alike 
method for (2n + 1) DOF hyper-redundant manipu-
lator arm. Authors in [5] combined two methods as 
a real-time IK solver for a human-like arm manipu-

lator based on closed-form analytical equations for 
a given position while others [6] presented an on-
line adaptive strategy based on the Lyapunov stabil-
ity theory in addition to Radial Basis Function 
Network (RBFN) and quadratic programming 
which requires a complex hardware resources, the 
simulation was done for the position of ee in addi-
tion to avoid obstacles and was conducted on the  
7-DOF PA-10 robot manipulator. In [7] a kinematic 
and time-optimal trajectory planning was consid-
ered for redundant robots, two approaches were 
presented, joint space decomposition and a numeri-
cal null-space method for a given pose. They were 
tested by 7-DOF industrial robots and demand high 
consuming time for resolving IK. Nowmetaheuris-
tic optimization algorithms are an encouraging al-
ternative approach to traditional IK techniques due 
to their strong performance on challenging and 
high-DOF problems in many various domains, the 
solution can be solved by minimizing an objective 
function. [8, 9] proposed an SFLA and MSFLA 
respectively, that for a high dimensional continuous 
function optimization. These methods yield a strong 
robustness and best convergence also presented 
a comparative study for PSO, SFLA, MSFLA, and 
MSFLA-EO. Which designated that MSFLA is bet-
ter than others. In [10] a modified SFLA was as-
sumed for obtaining the optimum preventive main-
tenance scheduling of generating units in power 
system. While [11] presented a comparative study 
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among five evolutionary-based optimization algo-
rithms as GA, MA, PSW, ACO, and SFLA, they 
presented the processing time for solving the F8 
function and concluded that the SFLA is the best. 
This work is considered as an extension of work in 
[12-15]. The proposed algorithm isthe modified 
shuffled frog-leaping algorithm (MSFLA), which is 
characterized as accurate and fast converging in 
discovering the solution based on the previous lit-
erature study. Initially, we define an objective func-
tion to minimize the error between the desired and 
the actual end-effector pose. The objective function 
considers the minimal movement between the pre-
vious and the actual joint configurations. To over-
come the constrained problems, we use a penalty 
function to penalize all those manipulator configu-
rations that violate the allowed joint boundary. 
Hence, the proposed approach estimates the feasi-
ble manipulator configuration needed to reach the 
desired end-effector pose. The remainder of this 
paper is organized as follows: Section 2 present the 
architecture and kinematics of a robotic manipula-
tor. Sections 3 and 4 introduce metaheuristic opti-
mization algorithm MSFLA and the weighted ob-
jective function. Section 4 shows the simulation 
results of the proposed trajectory planning method 
applied to the manipulator. 

Manipulator Kinematics 
In order to determine the relationship between 

the coordinate frames, which are assigned to ro-
bots’ links and joints, homogeneous transforma-
tions are required. Three parameters are employed 
to describe the rotation while another three parame-
ters are used to define the translation. Accordingly, 
the Denavit-Hartenberg (DH) convention was used 
to describe kinematically the rigid motion by as-
signing the values of four quantities for each link, 
two describe the link itself, and two describe the 
link's connection to a neighboring link. Where θ, a, 
d and α are the joint angle, link length, link offset 
and link twist between joints. While Ti is the homo-
geneous transformation matrix between the frames 
that is a function of θ while the other three parame-
ters are constant. The data in Table 1 represent link 
parameters of the arm-part based on DH strategy in 
two formulas: standard and modified DH. Whereas 
the standard simulation form of LabVIEW Robotics 
module was used, in order to validate the design. 
The position of all links of an arm-part manipulator 
can be specified with a set of 6 joint variables from 
the shoulder's joints till wrist's joints. This set of 
variables is often referred to as a 6×1 joint vector 
[12]. 

 
Table 1. Link parameters of the manipulator’s arm-part 

Modified denavit hartenberg  Standard denavit hartenberg 
αi–1 ai–1 [cm] di [cm] θi Initial value of θi αi ai [cm] di [cm] θi Initial value of θi Joint offset 

2−π  0l  0 1θ  2π  2−π  6.4 0 1θ 0 0 
2π  1l  0 2θ  2−π  0 30.2 0 2θ 2−π  2−π  

0 2l  0 3θ  2−π  2π  0 0 3θ 2π  2π  
2−π  0 3 4l l+  4θ  0 2π  0 23.5 4θ 0 0 

2π  0 0 5θ  2−π  2−π  5.3 0 5θ 2π  2π  
2−π  5l  0 6θ  0 

 

0 5.6 –2 6θ 0 0 

 
The space of all joint variables is referred to as 

the joint-space 1 2 6[ , , , ] .TΘ = θ θ … θ  Here we have 
been concerned with computing the Cartesian space 
representation from the knowledge of the joint-
space information. Hence the homogeneous trans-
formations of the links were used 1 .i

iT
−  If the ro-

bot’s joint-position sensors are estimated by servo-
mechanisms, the Cartesian position and orientation 
of the hand-part can be computed by 0

7T  [12]. 

Proposed Optimization Techniques  
for solving kinematics 
The evolutionary optimization algorithms can 

solve the complicated nonlinear equations com-
pletely and efficiently. The solution of the inverse 

kinematics for the manipulator is a very difficult 
problem to obtain by traditional approaches. Be-
sides, the suggested strategies do not require the 
inversion of any Jacobian matrix, and then it avoids 
singularities configurations. In this paper, two algo-
rithms are used to optimize this problem, the differ-
ential evolution and the modified shuffled frog-
leaping algorithms. In general, this optimization 
technique is based on the forward kinematics equa-
tions, which always produces a solution in coopera-
tion with an objective function. Hence, the general 
aspect of the problem can be expressed as minimiz-
ing ( ) ,J Θ  constrained by min max .Θ ≤ Θ ≤ Θ  Fur-
thermore, the objective function could be defined as 
the weighted sum of the errors as follows 
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( ) ( ) ( )
( ) ( ) ,
error error

G E G E

J P O

P P O O

Θ = σ Θ + ε Θ =

= σ − Θ + ε − Θ
 

Where ( )errorP Θ  and ( )errorO Θ  represent the posi-
tion and orientation errors respectively and could be 
computed as a difference in distance between the 
target and current position, in this work we used an 
Euclidean formula as a representation of distance. 
While the parameters σ and ε are the weights of the 
position and the orientation, respectively. Let 

( ),G GG P O=  be a given target end-effector pose 

while ( ) ( ) ( )( ),E EE P OΘ = Θ Θ  is the current end-
effector pose in the workspace corresponding to 
configuration 1 2 6[ , ]TΘ = θ θ …θ  which can be cal-
culated using forward kinematics, where P refers to 
the 3D position vector of pose while O refers to the 
vector of Roll-Pitch-Yaw Euler angles of pose (in 
radians), respectively. Which the optimization algo-
rithms are exploring directly in the configuration 
space of the manipulator. Hence, each individual 

,1 ,2 , ,6[ , ]T
i i i i j iΘ = θ θ …θ …θ  represents an i-th can-

didate set of joint angles. Henceforward, at each 
iteration, we evaluate each candidate configuration 

iΘ  by passing it through the forward kinematics 
module and measuring the position and orientation 
error between where the end-effector would be at 
configuration iΘ  and the target end-effector pose. 
In order to enforce joint limits, each dimension j of 
element iΘ  should be limited to searching in the 
range of valid joint angles [ ]min max, .iΘ ∈ Θ Θ  This 
can be realized by clamping each dimension j 
within these bounds at each iteration immediately 
after it is updated. 

Modified Shuffled Frog-Leaping Algorithm 
The shuffled frog-leaping algorithm (SFLA) was 

developed by Eusuff and Lansey in 2003 [8]. It is 
a member of the Memetic algorithm family, a par-
ticular type of meta-heuristic optimization ap-
proaches and evolutionary algorithms, which is 
based on population. It is inspired by the memetic 
evolution of frogs exploring food in a lake, which 
consolidates the benefits of the genetic-based me-
metic algorithms (MAs) and by the social behavior-
based particle swarm optimization [9]. generally, 
the SFLA incorporates two alternating processes: 
a local exploration in the sub-memeplex and 
a global information exchange among all meme-
plexes.The SFLA optimization achievement basi-
cally relies on two facts, the first one is the evolu-
tion process on each memeplex that embraces dif-
ferent cultures of frogs, where the culture 

stimulates a fitness value, and serves as a local 
search within memeplex analogous to PSO algo-
rithm which imitates the social behavior of the 
leaping action of frogs searching for food. The sec-
ond fact is an idea held within each frog which can 
be influenced by the ideas of other frogs from other 
memeplexes throughout the shuffling rule, this 
animates the cooperation process which it implies 
an adaptation idea and improves the success rate of 
discovering the solution in the optimization puzzle. 
In this process, a modification was applied to the 
frog-leaping action that enhances the exploration 
manner in the space [10, 11]. Moreover, the ran-
domization strategy in the evolution process prof-
fers the algorithm the ability to discover the local 
best solution within search space stochastically in 
addition to the communication process that possibly 
finds a global optimum solution in shorter time. 
The local search and the shuffling processes con-
tinue until the defined convergence criteria are sat-
isfied. The pseudocode of the algorithm is pre-
sented in Algorithm 1. 

The MSFLA meta-heuristic strategy is summa-
rized in the following steps: 

a. Initialization step, construct the population 
NP of frogs randomly similar to the first step in DE 
algorithm, then Select m, and n, where m is the 
number of memeplexes and n is the number of 
frogs in each memeplex. Therefore, the total 
amount of frogs NP can be calculated as . ,NP m n=  
additionally, the ith frog is expressed as a vector 
with a dimension equal to the configuration space 
as follows ( ),1 ,2 ,6, , , ; 1,2, , .i i i i i NPΘ = θ θ … θ = …  

b. Rank step, compute the performance value if  
for each frog .iΘ  Sort the NP frogs in a descending 
order according to their fitness. Save them in an 
array { }, ; 1, 2, , ,i iU f i NP= Θ = …  so that i = 1 
denotes the frog with the best performance value 
and could save it as a gΘ  in each iteration while the 
algorithm is running. 

c. Partition Step, partition array U into m meme-
plexes 1 2, , , ,mY Y Y…  each including n frogs, such 
that 

( ( 1))

( ( 1))

, | ,

, 1, , ; 1, , .

k k k k
i i i k m i

k
i k m i

Y f

f f i n k m

+ −

+ −

⎡= Θ Θ = Θ⎣
⎤= = … = …⎦

 

In this process, the first frog goes to the first 
memeplex, the second frog goes to the second me-
meplex, frog m goes to the mth memeplex, and frog 
m + 1 goes back to the first memeplex, etc.  

d. Memetic Evaluation step, evolve each meme-
plex ; 1, ,kY k m= …  according to the frog-leaping 
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algorithm as follow. Within each memeplex, the 
frogs with the best and the worst fitness values 
are defined as bΘ  and ,wΘ  respectively. Fur-
thermore, the frog with the global best fitness is 
defined as .gΘ  Next, an improvement process is 
applied to only the frog with the worst fitness in 
each cycle. Hence, the position of the frog with 
the worst fitness is modified which emulates the 
leaping process as follows: leaping distance 

( )[ ]0,1 ,L b wD C rand= Θ − Θ  then new position 
;w w DΘ = Θ +  max max] , [.D D D∈ −  Where, rand(0,1) 

is a random number between 0 and 1, maxD  is the 
maximum allowed change in a frog’s position and 

LC  is the modification of the algorithm which it is 
a constant indicates the amount of frog-leaping in 
each memeplex. The evaluation process, for all 

memeplexes, is repeated by an adaptable number of 
iterations ,iM  until no improvement becomes pos-
sible. 

e. Shuffle Memeplexes Step, shuffle frogs and 
replace all memeplexes ; 1, ,kY k m= …  into U, 
such that { }, ; 1, 2, ,i iU f i NP= Θ = …  similar to the 
initialization phase, afterwards sort U in order to 
decrease the performance value, update the popula-
tion best frog’s position .gΘ  

f. Check convergence, check the convergence 
criteria if satisfied then stop otherwise return to the 
partition step and continue for a specific quantity of 
iterations iN, finally after each iteration the first 
frog in the sorted list represents a global solution. 
The number of iterations iM specifies the depth of 
search within memeplexes while iN governs the 
solution producing process. 

 
Algorithm 1. The pseudo-code of the Shuffled Frog-Leaping Algorithm 
Initialization: 

{ }1 2, , , , , ;
;

;
1,

( )

i NPPopulation
m number ofmemeplexes
n quantity of frogs in each memeplex
l iN
while convergence criteria is satisfied Or until met iN do

← Θ Θ … Θ … Θ

←
←
←

 

Rank Step: Evaluate each frog iΘ  using a fitness function; 
Partition Step:  
Construct an array U of frogs and their fitness’s values; 
Sort the array U in descending order based on the fitness column; 
Construct ( ; 1, , )kY k m= …  memeplexes each including n frogs; 
Evaluation Step: 

1,for iM do←A  
1,for k m do←  

Determine the worst and best frogs position based on their fitness’s values; 
Improve the worst frog position using a leaping distance; 
end for  

end for  
Shuffle Memeplexes Step: combine the evolved memeplexes; 
Check Convergence: Update the population best frog’s position ;gΘ  

1;l l← +  
end while  

 
Simulation Results and Discussions 
In this work, we solved the inverse kinematics 

of a redundant manipulator with six joints to follow 
a destination pose. The manipulator’s joints corre-
spond to the variable : 1, 2, , 6j jθ = …  are con-
strained. The DH table is presented in Table 1. In 
the inverse kinematics experiments, the desired 
end-effector pose for the arm-part of the manipula-
tor was determined by this vector 

( , ) ( , , , , , )
( 20,3,40,0,10,15).

G GG P O x y z roll pitch yaw= = =

= −
 

Moreover, the parameters of the objective func-
tion were adjusted as follows 1 0.7,ε = − σ =  so 
there is a balance between position and orientation 
to be optimized. In case of MSFLA, the parameters 
of the algorithm were introduced in Table 2, and 
a summary of the results of utilizing the algorithm 
for multiple scenarios was introduced in Table 3. 
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Table 2. Setting of the MSFL Algorithm 
m Number of memeplexes 3 
n Number of frogs within memeplexes NP m  

CL
 Amount of Leaping 1.3 
 

Hereafter, Fig. 1 displays the values of the ob-
jective function, while Fig. 2 and Fig. 3 represent 
the position and orientation of the manipulator’s 
end-effector after applying the solutions to validate 
IK solver. 

 
Table 3. Inverse Kinematics Results of MSFL Algorithm 

Iterations 
Tests Population iN iM ( )J Θ  Total 

Error 
Execution Time 

[ms] 
Reaching Target 

( , , , , , )x y z roll pitch yaw  

1 20 30 10 11.618 29.71 729 ( 15.7365,5.43,52.57,6.63,12.66,16.164)−  

2 30 30 10 7.6614 12.08 1045 ( 21.183,2.915,50.77, 0.201,10.01,14.85)− −  
3 40 30 15 10.5382 19.21 1685 ( 25.08,8.56,46.818, 6.2,9.6,5.4251)− −  
4 40 40 30 18.4625 18.46 4526 ( 25.23,8.34,47.59, 2.53,8.62,14.13)− −  

5 60 40 30 8.2925 8.292 6645 ( 24.46,0.0421,44.59,1.65,11.116,14.05)−  
6 80 50 40 11.024 11.02 13540 ( 26.998,3.594,42.87, 0.068,9.81,15.67)− −  
7 100 60 60 29.774 29.77 24191 ( 20.03,30.039,39.971, 7.71,3.679, 0.72)− − −  

8 130 70 60 0.1511 0.649 46282 ( 20.09,2.99, 40.004,0.208,9.64,14.89)−  
9 170 60 50 0.6168 2.168 40459 ( 20.151,2.84,40.09,0.89,10.36,16.15)−  

10 200 90 40 0.1139 0.298 57362 ( 19.927,3.0072,39.98, 0.134,10.105,14.89)− −

11 200 100 60 0.0729 0.378 92779 ( 20.002,2.998,39.99, 0.137,10.151,14.92)− −  
12 200 120 80 2.7672 5.8164 150246 ( 20.48,4.153, 40.49,0.807,4.087,13.787)−  
13 200 200 100 2.6713 1.9339 318481 ( 19.27,2.235,41.94, 0.979,10.88,11.48)− −  

14 250 90 40 0.003 0.016 69818 ( 19.99,3.00023,39.99,0.0049,10.006,14.99)−

15 250 140 80 1.266 6.553 215027 ( 20,3,40, 7.01976 10,10,15)e− − −  
16 250 140 100 4.647e-9 1.05e-8 260325 ( 20.09, 2.97, 40.0008, 1.687,6.689,13.57)− −  

17 300 140 80 1.01e-9 3.33e-9 255989 ( 20,3, 40,1.16487 9,10,15)e− −  
18 500 90 40 5.49e-10 9.9e-10 136888 ( 20,3, 40, 1.66261 11,10,15)e− − −  
19 500 200 100 3.02e-15 1.56e-14 681646 ( 20,3,40,3.22962 15,10,15)e− −  

20 1000 30 45 0.0968 0.025 95197 ( 20.031,3.04,40.04, 0.0037,10.96,14.876)− −  
 

 
Fig. 1. The objective function values after  

applying IK-MSFLA solver 

 
Fig. 2. The end-effector position of the manipulator after 

 applying the solutions to validate IK-MSFLA solver 
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Fig. 3. The end-effector orientation of the manipulator  

after applying the solutions to validate IK-MSFLA solver 
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Кинематическое решение для манипулятора беспилотного летательного аппарата на основе  
модифицированного алгоритма прыжка лягушки 

 
И. Н. Ибрахим, аспирант, ИжГТУ имени М. Т. Калашникова, Ижевск, Россия 

 
Рассмотрено кинематическое решение в реальном времени для манипулятора, прикрепленного к беспи-

лотному летательному аппарату; движение самого транспортного средства в данном исследовании не ана-
лизируется. Представленное кинематическое решение для манипулятора основано на модели Денавита – 
Хартенберга. Основной целью исследования является получение глобального решения в реальном времени для 
конфигурации и проектирования с взвешенной целевой функцией с наложением некоторых ограничений. При-
менение уравнений прямой кинематики манипулятора, полученных в результате исследования, позволяет 
превратить задачу планирования траектории в задачу оптимизации. Хорошо известны несколько типов вы-
числительных методов для решения ограниченных сложных нелинейных функций. 
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В данном исследовании предлагается модифицированный алгоритм прыжка лягушки (SFLA), который яв-
ляется одним из методов искусственного интеллекта и рассматривается как метод поиска. Это ограничен-
ный метаэвристический и популяционный подход. С его помощью представляется возможным решение об-
ратной кинематической задачи с учетом мобильности платформы. Кроме того, данный метод предотвра-
щает появление сингулярных точек, поскольку он не требует инверсии матрицы Якоби. Результаты 
экспериментального моделирования для планирования траектории манипулятора с шестью степенями сво-
боды подтвердили целесообразность и эффективность предлагаемого метода. 
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