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SOLVING THE KINEMATICS OF AN AERIAL HUMAN-LIKE MANIPULATOR
USING THE DIFFERENTIAL EVOLUTION ALGORITHM

L.N. Ibrahim, Post-graduate, Kalashnikov ISTU, Izhevsk, Russia
M.A. Al Akkad, PhD in Engineering, Associate Professor, Kalashnikov ISTU, Izhevsk, Russia

This paper concentrates on deriving the real-time kinematics solution of a manipulator attached to an aerial vehi-
cle, while the vehicle's movement itself is not analyzed. The manipulator kinematics solution using the Denavit -
Hartenberg model was introduced, too.

The fundamental scope of this paper is to get a global online solution of the design configurations with a weighted
objective function subject to some constraints. Adopting the resulted forward kinematics equations of the manipulator,
the trajectory planning problem turns into an optimization task. Several and well-known computing methods are
documented in the literature for solving constrained complicated nonlinear functions, where in this study the differen-
tial evolution algorithm is adopted, which is a combination of a mathematical search method and an evolution algo-
rithm.

1t is a constrained metaheuristic and population-based approach. Moreover, it is able to solve the inverse kinemat-
ics problem considering the mobile platform, in addition to avoiding singularities, since it does not demand the inver-
sion of a Jacobian matrix.

Simulation experiments were carried out for trajectory planning of the sixth degree of freedom aerial manipulator
and the obtained results for three different target points confirmed the feasibility and effectiveness of the suggested
method.

Keywords: manipulator, inverse kinematics, metaheuristics methods, evolution algorithms, optimization methods,

differential evolution algorithm.

Introduction
F I \ he inverse kinematics (IK) solver is a pri-

mary problem in robotic manipulation, par-

ticularly when real-time and precision in
calculations are demanded. Mathematically, the
numerical solution of kinematics is intricate be-
cause of the high degree of nonlinearity. Further-
more, Linear and dynamic programming techniques
usually fail or reach local optimum in solving NP-
hard problems with a large number of variables and
non-linear objective functions. Moreover, tradition-
ally Jacobian-based solutions are identified to scale
inadequately with the high number of degrees of
freedom (DOF) in addition to singularities exis-
tence [2]. In contrast, in [3] a comparative study of
several methods based on the Jacobian matrix was
presented, clarifying that the modified Levenberg -
Marquardt method is much better for a quite large
set of random configurations than others but may
lose convergence compared to Jacobian transpose
and pseudocode inverse methods. Recently many
researchers proposed a new method for solving
real-time IK without using the Jacobian matrix
based on the position of end-effector (EE), using

numerical and analytical mathematical tools but did
not mention exactly the performance as the time
consuming to get the solution [4]. In [5] also simi-
lar method for (2n + 1) DOF hyper-redundant ma-
nipulator arm was applied. Authors in [6] combined
two methods as a real-time IK solver for a human-
like arm manipulator based on closed-form analyti-
cal equations for a given position. While otherspre-
sented an on-line adaptive strategy based on the
Lyapunov stability theory, in addition to Radial
Basis Function Network (RBFN) and quadratic
programming, which requires complex hardware
resources [7].The simulation was done for the posi-
tion of EE in addition to avoid obstacles and was
conducted on PA-10 a 7-DOF manipulator. In [8]
a kinematic and time-optimal trajectory planning
was considered for redundant robots, two ap-
proaches were presented, joint space decomposition
and a numerical null-space method for a given
pose. They were tested on 7-DOF industrial robots
and demanded high consuming time for resolving
IK. Nowmetaheuristic optimization algorithms are
an encouraging alternative approach to traditional
IK techniques due to their strong performance on
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challenging and high-DOF problems in many vari-
ous domains, the solution can be solved by mini-
mizing an objective function, allowing the EE to
follow the desired path avoiding obstacles and dy-
namics singularities. In [9] it was explained and
proved that differential evolution (DE) algorithm
has emerged as one of the most powerful and versa-
tile global numerical optimizers for non-differential
and multimodal problems, they showed challenges
of the variants of DE which may provide less time
and more robustness in solving IK. In [10] a quad-
ratic programming with branching idea was pre-
sented with a weighted multi-objective function,
which gave a short-time response while [11]
showed a comparative research of four different
heuristic optimization algorithms GA, PSO, QPSO
and GSA for a 4-DOF manipulator in order to reach
the target position. In [12] a comparative study of
IK solver for a mobile manipulator using DE algo-
rithm was presented. It was concluded that hybrid
DE with biogeography-based optimization called
HBBO provides good results but a higher computa-
tional cost for weighted fitness function and pose
target, in contrast, DE proved to be superior to
PSO, CS, and TLBO, additionally the PSO algo-
rithm verified that it does not solve the inverse ki-
nematic problems correctly. In [13] a developed
methodology was applied to a synthesized six-bar
mechanism, it used DE with geometric centroid of
precision positions technique (GCCP). In [14] DE
was used to improve the design of a fuzzy control-
ler for a wall-following hexapod robot. In [15]
a modified self-adaptive DE was proposed in order
to improve the static force of humanoid robots,
showing robust, safe, reliable performance com-
pared with other metaheuristics. While [16] pre-
sented an approximation tool for the inverse model
of the industrial robot based on an adaptive neural
model optimized by advance DE.

The work in this paper is an extension of the
work in [17-19]. The proposed algorithm isthe DE

algorithm, which is characterized as accurate and
fast converging in discovering the solution as men-
tioned in [18]. Initially, we define an objective
function to minimize the error between the desired
and the actual end-effector pose. The objective
function considers the minimal movement between
the previous and the actual joint configurations. To
overcome the constrained problems, we use a pen-
alty function to penalize all those manipulator con-
figurations that violate the allowed joint boundary.
Hence, the proposed approach estimates the feasi-
ble manipulator configuration needed to reach the
desired end-effector pose.

Manipulator Kinematics

In order to determine the relationship between
the coordinate frames, which are assigned to ro-
bots’ links and joints, homogeneous transforma-
tions are required. Three parameters are employed
to describe the rotation while another three pa-
rameters are used to define the translation. Ac-
cordingly, the Denavit - Hartenberg (DH) conven-
tion was used to describe kinematically the rigid
motion by assigning the values of four quantities
for each link, two describe the link itself, and two
describe the link's connection to a neighboring
link. Where O, a, d and o are the joint angle, link

length, link offset and link twist between joints.
While 7; is the homogeneous transformation ma-

trix between the frames that is a function of 6
while the other three parameters are constant. The
position of all links of an arm-part manipulator
can be specified with a set of 6 joint variables
from the shoulder's joints Figure 1. This set of
variables is often referred to as a 6x1 joint vector
[17, 18].

The data in Table 1 represent link parameters of
the arm-part based on DH strategy in two formulas:
standard and modified DH. Whereas the standard
simulation form of LabVIEW Robotics module was
used, in order to validate the design.

Fig. 1. The manipulator with its joints and links. It has seven links and six revolute joints in the arm-part
while the hand-part contains 5 fingers. Each joint represents a single DOF
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Table 1. Link parameters of the manipulator’s arm-part
Modified Denavit Hartenberg Standard Denavit Hartenberg
0. 0. .
o g [em] | dlem] | 6 | (nitial o, aalem] | dfem] | 0 | (ial | o
value) value)

-n/2 A 0 0, /2 -/2 6.4 0 0, 0 0
m/2 h 0 0, | -m/2 0 30.2 0 0, | -n/2 | -n/2
0 A 0 0, | -m/2 /2 0 0 0, /2 /2
-n/2 0 L +1, 0, 0 /2 0 23.5 0, 0 0
/2 0 0 0, | -m/2 -n/2 53 0 0, /2 /2
-n/2 I 0 0 0 5.6 2 0, 0 0

The space of all joint variables is referred to as
the joint-space ® =[0,,0,,...,0,]". Here we have
been concerned with computing the Cartesian space
representation from the knowledge of the joint-
space information. Hence, the homogeneous trans-
formations of the links were used T If the ro-
bot’s joint-position sensors are estimated by servo-
mechanisms, the Cartesian position and orientation
of the hand-part can be computed by 77 [17, 18].

b, b, my, bl
o — by, by, my, byl
7t 5
by by, my, byl
0 O 0 1

where
b, = ((0910923094 —S91S94)065 —091s623s95)066 +
+ (—50,7;, —504¢0,50,,)s6;
b, = —((0610923064 —S91S94)095 —cels923s95)s66 +
+ (—0,c0,,50, —50,c0,)ch;
m,, = —s0; (0610623c64 — 50,50, ) —0,50,,50,;
b, = (0953623094 +50,c0,, )ce6 —50,50,50,;;
b,, = —(065s623ce4 +50,¢0,, )SG6 —c0,50,50,;;
my, =—s0,50,,c0, +c0,c0,;;
by, =((56,¢0,; — 6,50, ) cO; +50,50,,50, ) O, +
+(56,c0,,50, +¢0,c0,)s6,;
by, =—((56,c0,; — 0,50, ) cO; + 56,50,,50; ) 50, -
—(50,¢0,,50, +¢6,c0,)ch;
my, =—s06,(50,c0,; — 0,50, )+ 56,50,,c;.
The movement of the arm part is used to control
the motion of the hand-part located at frame 7 in
the workspace related to the base frame. Moreover,

the motion ranges of the joints are shown in Table 2
which were readjusted to be more fitting for ac-

complishing more tasks compared to the joints of
the human arm.

Table 2. Motion range of the manipulator’s arm-part

angle | 6, 0, 0, 0, 05 0
Arm- 90| 47 |90 [ 90 | 90 | —90
part range| — — — — — —
+90 | +115 | +15 | +90 | +25 | +90

Proposed Optimization Techniques

for solving kinematics

The evolutionary optimization algorithms can
solve the complicated nonlinear equations com-
pletely and efficiently. The solution of the inverse
kinematics for the manipulator is a very difficult
problem to obtain by traditional approaches. Be-
sides, the suggested strategies do not require the
inversion of any Jacobian matrix, and then it avoids
singularities configurations. In this paper, to opti-
mize this problem, the differential evolution algo-
rithm was used. In general, this optimization tech-
nique is based on the forward kinematics equations,
which always produces a solution in cooperation
with an objective function. Hence, the general as-
pect of the problem can be expressed as minimizing
J(®©), constrained by ©,, <©<®, . Further-

more, the objective function could be defined as the
weighted sum of the errors as follows

J(®)=0F,, (0)+0,,.(®)
=o|p, - £, (0)|+¢|0, -0, (©)

(©)
tion and orientation errors respectively and could be
computed as a difference in distance between the
target and current position, in this work we used an
Euclidean formula as a representation of distance.
While the parameters ¢ and ¢ are the weights of the
position and the orientation, respectively. Let

G=(PG,OG) be a given target end-effector pose

=oP

error

+e0

error

: (1)

and O

error

where P,

error

(®) represent the posi-
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while E(@):(PE (@),OE(G))) is the current end-
effect or pose in the workspace corresponding to

.6,]'
calculated using forward kinematics, where P refers
to the 3D position vector of pose while O refers to
the vector of Roll-Pitch-Yaw Euler angles of pose
(in radians), respectively. Which the optimization
algorithms are exploring directly in the configura-
tion space of the manipulator. Hence, each individ-

T
ual ®l.=[6i’1,6i,2,...,91.’].,...,61.,6] represents the

configuration ®=[6,,6,,... which can be

i™ candidate set of joint angles. Henceforward, at
each iteration, we evaluate each candidate configu-
ration ®, by passing it through the forward kine-
matics module and measuring the position and ori-
entation error between where the end-effect or
would be at configuration ®, and the target end-
effect or pose. In order to enforce joint limits, each
dimension j of element ®, should be limited to
searching in the range of valid joint angles
0, €[0,..,0, . ] This can be realized by clamping
each dimension j within these bounds at each itera-
tion immediately after it is updated.

min ?

Differential Evolution Algorithm

The DE algorithm was introduced by Storn and
Price [1] and studied in [9, 15, 18]. It is one of the
most powerful stochastic population-based optimi-
zation algorithms. It was invented to optimize func-
tions in an n-dimensional continuous domain.
moreover, it occupies several benefits such as sim-
ple implementation, good performance, global op-
timization, robust, low space complexity, converges
fast, and has a good balance between exploration
and exploitation. The DE algorithm can be consid-
ered both as an evolution algorithm and as
a mathematical technique, because it uses the con-
cepts of population and evolution, in addition to
using a mathematical searching method.

The initialized to a uniform sampling of the in-
stance space, are continuously enhanced by peri-
odically adding a scaled variant of the difference
vector to a third individual to generate a new candi-
date solution and then producing the succeeding
generation. DE consists of four stages: initializa-
tion, mutation, crossover, and selection. The last
three of these are iterated until a termination condi-
tion such as the maximum number of generations is
reached. Nevertheless, unlike other evolutionary
algorithms before-mentioned as evolution strate-
gies, mutation is performed by applying the scaled
difference between members of the population.
This has the impact of adjusting the step size to the

fitness aspect over time. The implementation of this
method is illustrated in Algorithm 1.

Algorithm 1. The pseudo-code of the differential
evolution algorithm

Initialization:
Population" « {@1(]),(9 ®

R i

g < 1&g
Evolution Process:
While Termination criteria not met do

for i<1,NP do

Mutation Process: v."*) « mutate(@,(g))

i i

Crossover Process: u,*) « crossover(@ (s) y(e) )

Selection Process:
if f(u)< f(@}g)) then

insert  u'® ()

into population
else
insert ©® (&+1)
end if

end  for

g« g+l

into population

end while

The trajectory planning strategy can be trans-
formed into an optimization issue with multiple
constraints. Firstly, it demands to determine the
dimension of the population NP, the generation
number g with maximum g__, the dimension real-
valued of the individual is equal to the configura-
tion space of the manipulator, the scale factor F,
and the crossover factor C,. Then individuals in the

population are expressed by:

e - (ei,l(g),ei’z(g)’ o 9[’6(53)); i=12,...,NP,

represents the design variable of the i-th individual in
generation g. DE begins by initializing a population
of NP to cover as much as possible of the exploration
space constrained by the minimum and maximum

T
®min = |:emin,l s emin,2 LA emin,i LA emin,6 ]

T
and ®max = |:emax,l > emax,Z LA emax,i EA emax,6:| N
Hence, the i-th individual may then be initialized

as: 0, =9 .+rand(0,1)[6max,j—Gmin,j], with

i,j — Ymin,j

bounds

rand(0,1) being a uniformly random value be-

tween 0 and 1. Henceforward, The mutant strategy
is adopted after initialization to generate a donor

[

vector v, :(U,.J(g),uﬂ(g),...,UAG(g)) by its corre-

sponding target vector @i(g ),
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The following have been proposed in [9, 18]:
DE/rand/1:

DE/best/2:
V.(é’) -0

i — “best

Wi g0, -0,9)+F(0,Y -0,

DE/current-to-best/1:

i bm(g) _@i(g))+ F (@r(g) _@n(g))

v =0+F(0

either or: this strategy merges two methods to gen-
erate the donor vector [26].

p, < mutation probability €[0,1],

a < random number €[0,1]

if a<p, then

use DE /rand /1:
v (@® =®rl(g) +E(® ©)_@ (g))

else
use DE / rand | 2 :

VA(g)=®rl(g)+K(® ©_e ig ©_@ (g))

t n i 3 i

end if

Where, F; is the scaling factor within 0 and 1, indi-
ces n,n,,1;,, and r, are randomly selected integers
in the range [l,NP], such that r, #r, #r, 21, #1.

®,,.®) is the best individual in the current popula-

best

tion, also p, and a are the mutation probability and

random number, respectively. At that point,

a crossover between v.*) and ©¢) is performed to

generate a trial vector

u'®) =(u,.,,(g),u,-,2(g), s um(g)). Two methods were

used in this paper, a binomial and an exponential
crossover procedure [8]. The binomial crossover
provides a trial vector by selecting an element from
the donor vector whenever a randomly produced
value formed from a uniform distribution is below
the crossover rate C,. Additionally, an element / is

randomly taken per iteration to always come from
a donor vector as follows:

v, * if i=h or rand(0,1)<C,

0, j(g ) otherwise.

Exponential crossover tries to exploit relation-
ships between adjacent elements. It works by

choosing a random starting element and selecting
the next L consecutive elements in a circular man-
ner from the donor vector. The number of elements
L is calculated as follows:

Algorithm 2. Exponential crossover
L<0
repeat
L<0
until rand(0,1)>C, or L>D

After crossover, the objective function as ex-
plained in Eq. 1 is evaluated for the trial vector

u'®). According to the greedy selection only, as
shown in algorithm 1. Afterward, the better of ui(g)

and @i(g) will be picked to remain into the next
generation.

Simulation Results

In this work, we solve inverse kinematics of the
redundant manipulator with six joints to follow
a destination pose. The manipulator’s joints are
0,,J=1,2,...,6. The DH parameters are presented

in Table 1. In the inverse kinematics experiments,
the desired end-effector pose for the arm-part of the
manipulator was determined as a variable

G= (PG,OG) = (x,y,z, roll,pitch,yaw) = (—20,3, 40,
0,10,15). Moreover, the parameters of the objec-

tive function were adjusted as follows e=1-p=

=0.7 so there is a balance between position and ori-
entation to be optimized. In case of DE algorithm,
Table 3 shows DE settings while Table 4 presents
the results of utilizing DE for some scenarios.

Table 3. Setting of the DE Algorithm

Mutation Method Random
Scale Factor 0.9
Crossover Method Uniform
Crossover Probability 0.95

As presented in Table 4, the purpose of these
experiments is to find the iteration and population-
which achieves a minimum error and execution
time. The total error was obtained using
thefollowing formula:

iterations

Er= 2, |(Py=Fs)+(0n = 00) |

1

This formula computes the error in position and
orientation for the end-effector in each iteration.
The algorithm gives multiple solutions after each
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iteration because of the redundant nature of our
manipulator. The total error is computed for all it-
erations when applying the algorithm with custom
parameters. While the execution time was obtained
by calculating the time consumption for the algo-
rithm to reach the iterations. It is clear that the 9"
test is the proper solution with a convergence time
equal to 184 ms, and a total error equal to
0.00379635. Taking into consideration that the ad-
aptation of the DE parameters nearby the setting of
this result may improve the solution to be more fit-
ting but with longer convergence time. As pre-
sented in Table 4, it is obvious that the execution
time depends on the size of the population and the

iterations, respectively. Further, the population size
achieves the diversity feature which let the algo-
rithm explores more solutions in the workspace
while a high iteration gives a solution much closer
to the target.

Here, we have applied the algorithm on multiple
targets as shown in Table 5.

These target points were taken from real ex-
periments of the manipulator for the task of reach-
ing and grasping an object. Here we are going to
validate the response for the total error and execu-
tion time. Figure 2 shows the values of the objec-
tive function for those new targets and the solutions
for them were presented in Table 6.

Table 4. Inverse Kinematics Results of the Differential Evolution Algorithm

Test No. | Population | Iterations J(©) Zﬁfrl ];:1);;:1[1:;(:]1 (x,y},{j:;ill,li:iﬁe;aw)

1 6 250 4.60464 -8.22166 247 (—20.0619,3.00659,40.0325,3.74,—4.49369,17.5544)
2 6 500 1.53162 1.78975 594 (—19.56,2.64638,39.8767,0.465805,13.2258,13.135)
3 8 600 1.19735e-5 | 8.26589¢-6 861 (—20,3,40,—8.25797@—6,10,15)

4 8 800 3.60207e-7 | 6.13326e-7 1125 (—20,3,40,2595526‘ - 8,10,15)

5 10 500 0.000230295 | 0.000677389 986 (—19.99,3.0001,40.0001,4.21087e - 5,10.0004,15)
6 10 750 1.55363e-7 | 1.13202e-7 1301 (—20,3,40,1.132026—7,10,15)

7 10 1000 4.53651e-9 | —3.13365e-9 1917 (—20,3,40,—1.404166—9,10,15)

8 12 250 0.22408 -0.001729 567 (—19.809,3.0609,40.1352,0.05281,10,1526,15.087)
9 12 100 0.00231037 | 0.00193043 184 (*20.000 1,3.00003,40,*0.0006738,9.99932,14.9998)
10 12 500 3.42549¢-5 |0.000107144 1146 (—20,3,40,3-254156—5,10,15)

11 20 500 0.000828201 | 0.00156291 1736 (—19.9994,3.00,40.0002,0.000503176,10.00,14.99)
12 20 750 1.28825e-6 | —4.33271e-6 2628 (—20,3,40,—3.2983 16—6,10,15)

13 30 500 0.00107932 | -0.00085163 2614 (—20.0004,2.999,39.999,0.0005774,9.999,15.000)
14 30 1000 9.20132e-7 | 3.09732e-8 5255 (—20,3,40,3.9784326 - 8,10,15)

Table 5. Applying the algorithm on three target points

Test no. (P(;,O(;):(X,YaZ,’”o”aPitChayaW)G 9:(91,92,93,94,95,96)
1 (22.66,18.75,35,107.78,21,65.94) (19.3134, 108.021, —79.9889, 82.0306, —19.5808, 36.2275)
2 (32.2,8.47,40,90,0.4,50) (0.189, 77.562, —52.425, 70.65, —34.05, 28.523)
3 (32.2,8.5,40,90,0.4,40) (=0.956, 72.63, —47.256, 64.066, —42.752, 33.713)

Table 6. The algorithm response for multiple target points

. . Total Execution Reaching target
Test no. | Population | Iterations J(0) ertor time [ms] (x,y,z,roll, pitch, yaw)
1 0.00231037 | 0.00193043 184 (22.6612, 18.751, 35.0009, 107.779, 21.002, 65.938)
2 12 100 |0.00127429 | -0.00362273 181 (32.199, 8.46, 39.999, 89.997, 0.3998, 50.0005)
3 0.00796475 | 0.0221528 177 (32.2145, 8.4989, 40.007, 90.013, 0.407, 39.982)

Figure 2 presents the values of the objective
function for the first target, while Figure 3 illus-
trates the position and orientation of the end-
effector for the first target after applying the so-
lutions to validate the IK solver. Also Figure 4

and Figure 6 present the values of the objective
function for the 2™ and 3" targets. Furthermore,
Figure 5 and Figure 7 show the position and ori-
entation of the end-effector for the 2" and 3™
targets.
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Fig. 2. Displays the values of the objective function Fig. 3. [lllustrates the position and orientation
for the first target after applying the IK-DE solver of end-effector for the first target after applying the solu-
tions to validate the IK-DE solver
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Fig. 4. Displays the values of the objective function Fig. 5. [Illustrates the position and orientation

for the second target after applying the IK-DE solver of end-effector for the second target after applying the so-
lutions to validate the IK-DE solver
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Fig. 6. Displays the values of the objective function Fig. 7. Illustrates the position and orientation
for the third target after applying the IK-DE solver of end-effector for the third target after applying the solu-
tions to validate the IK-DE solver



40 ISSN 1813-7903. Bectnuk kI’ TY umenun M. T. Kanamnaukosa. 2019. T. 22, Ne 3

Conclusion

In comparison with other researchers work, the
inverse kinematics of a human-like six joints ma-
nipulator to follow a certain pose was solved. The
DE algorithm was used and the parameters of the
objective function to be optimized were adjusted to
have balance between position and orientation. It
was obvious that the execution time depends on
both the population size and the iterations. The
population size achieves the diversity feature,
which allows the algorithm to explore more solu-
tions in the workspace while the high iteration
gives a solution much closer to the target. The IK
solver was validated. Each new solution is consid-
ered as a global solution within its iteration, and it
grants the algorithm the ability to explore new
global solution. Therefore, it is important to alter
the settings of the DE algorithm to geta solution
based on the objective function in shorter time. The
adaptation of the algorithm parameters nearby the
setting point may improve the solution to be more
fitting but with longer convergence time. The ob-
tained results for three different target points con-
firmed the feasibility and effectiveness of the sug-
gested method.

References

1. Storn R., Price K. [Differential Evolution -
A Simple and Efficient Heuristic for global Optimization
over Continuous Spaces]. Journal of Global Optimiza-
tion, 1997, vol. 11, no. 4, pp. 341-359.

2. Buss S.R. [Introduction to inverse kinematics with
Jacobian transpose, pseudoinverse and damped least
squares methods]. /IEEE Journal of Robotics and Auto-
mation, 2004, 17, pp. 1-19.

3. Dulgba I., & Opatka M. [A comparison of Jaco-
bian-based methods of inverse kinematics for serial
robot manipulators]. International Journal of Applied
Mathematics and Computer Science, 2013, 23,
pp. 373-382.

4. Wang X., Zhang D., Zhao C. [The inverse kine-
matics of a 7R 6-degree-of-freedom robot with non-
spherical wrist]. Advances in Mechanical Engineering,
2017,9, 1687814017714985.

5. Ananthanarayanan H., & Orddiiez R. [Real-time
Inverse Kinematics of (2nt+ 1) DOF hyper-redundant
manipulator arm via a combined numerical and analyti-
cal approach]. Mechanism and Machine Theory, 2015,
91, pp. 209-226.

6. Tolani D., & Badler N. 1. [Real-time inverse kine-
matics of the human arm]. Presence: Teleoperators &
Virtual Environments, 1996, 5, pp. 393-401.

7. Toshani H., & Farrokhi M. [Real-time inverse
kinematics of redundant manipulators using neural net-
works and quadratic programming: a Lyapunov-based

approach]. Robotics and Autonomous Systems, 2014, 62,
pp- 766-781.

8. Reiter A., Miiller A., & Gattringer H. [Inverse
kinematics in minimum-time trajectory planning for ki-
nematically redundant manipulators]. Industrial Elec-
tronics Society: 42" Annual Conference of the IEEE,
2016, pp. 6873-6878. IEEE.

9. Geitle M. [Improving differential evolution using
inductive programming]: Master's thesis, 2017.

10. Bodily D.M., Allen T.F., Killpack M.D. [Motion
planning for mobile robots using inverse kinematics
branching]. Robotics and Automation (ICRA): Interna-
tional Conference IEEE, 2017, pp. 5043-5050. IEEE.

11. Ayyildiz M., Cetinkaya K. [Comparison of four
different heuristic optimization algorithms for the in-
verse kinematics solution of a real 4-DOF serial robot
manipulator]. Neural Computing and Applications, 2016,
27, pp. 825-836.

12. Lopez-Franco C., Hernandez-Barragan J., Alanis
A.Y., Arana-Daniel N., Lopez-Franco M. [Inverse kine-
matics of mobile manipulators based on differential evo-
lution]. International Journal of Advanced Robotic Sys-
tems, 2018, 15, 1729881417752738.

13. Shiakolas P.S., Koladiya D., Kebrle J. [On the
optimum synthesis of six-bar linkages using differential
evolution and the geometric centroid of precision posi-
tions technique]. Mechanism and Machine Theory, 2005,
40, pp. 319-335.

14. Juang C.F., Chen Y.H., Jhan Y.H. [Wall-following
control of a hexapod robot using a data-driven fuzzy con-
troller learned through differential evolution]. [EEE Trans-
actions on Industrial electronics, 2015, 62, pp. 611-619.

15. Pierezan J., Freire R.Z., Weihmann L., Reynoso-
Meza G., dos Santos Coelho L. [Static force capability
optimization of humanoids robots based on modified
self-adaptive differential evolution]. Computers & Op-
erations Research, 2017, 84, pp. 205-215.

16. Ngoc Son N., Anh H.P.H., Thanh Nam N. [Robot
manipulator identification based on adaptive multiple-
input and multiple-output neural model optimized by
advanced differential evolution algorithm]. International
Journal of Advanced Robotic Systems, 2016, 14,
1729881416677695.

17. Ibrahim LN. [Ultra-Light Weight Robotic Ma-
nipulato]. Vestnik IzhGTU imeni M.T. Kalashnikova,
2018, vol. 21, no. 1, pp. 12-18 (in Rus.). DOI: 10.22213/
2413-1172-2018-1-12-18.

18. Ibrahim LN. [A Comparative Study for an In-
verse Kinematics Solution of an Aerial Manipulator
Based on the Differential Evolution Method and the
Modified Shuffled Frog-Leaping Algorithm]. Mekha-
tronika, avtomatizatsiya, upravienie, 2018, vol. 19,
no. 11, pp. 714-724 (in Russ.).

19. Ibrahim I.N., Al Akkad M.A. [Studying the Dis-
turbances of Robotic Arm Movement in Space Using the
Compound-Pendulum Method]. Vestnik IzhGTU imeni
M.T. Kalashnikova, 2017, vol. 20, no. 2, pp. 156-159 (in
Russ.).



Mal[[l/lHOCTpoeHI/Ie U MAIIUMHOBECACHUEC 41

HccnenoBanne KHHEMATHKH JIUISI MAHUTTYJISITOPA 0eCUJIOTHOIO J1eTaTeJIbHOI0 annaparTa Ha 0OCHOBE
an¢depeHnnATBHOr0 AJIrOPUTMA IBOTIOINH

U. H. Hopaxum, actupant, Vbx['TY umenun M. T. Kanamuukosa, Moxesck, Poccust
M. A. Anb Axkkao, KaHIUAAT TEXHUYECKUX Hayk, moueHT, VhxI'TY umenn M. T. Kananaukosa, Mxesck, Poccus

Paccmompeno kunemamuueckoe peulenue 8 pedaibHOM GPEMeHU Ol MAHURYISIMOPA, NPUKPENIeHHO20 K Oecnu-
JIOMHOMY JIeMAameIbHOMY ANRAPAmY; OGUNCEHUE CAMO20 MPAHCNOPMHO20 CPEOCMEd 8 OAHHOM UCCIE008AHUL He AHA-
ausupyemcs. IIpedcmagnennoe Kunemamuyeckoe peuteHue Ol MAHUNYJIMOPA OCHO8AHO Ha Modenu [enasuma —
Xapmenbepea.

OcHOBHOU Yenblo UCCIeO08aHUSL AGISLEMCS NOTYYEHUE 2I00ANbHO20 PEUEHUs 8 PEaTibHOM 8peMeHU Ot KOHQu2ypa-
Yuu RPOEKMUPOBAHUsL C 836EULCHHOU Yele6oll (DYHKYUEll C HATIONHCEHUEM HeKOmOopblx ozpanudenull. [Ipumenenue ypag-
HeHUll NPAMOU KUHEMAMUKY MAHURYISAMopd, NOJYYEHHbIX 8 pe3ylbmame Uccie008anus, no3680Jsem npeepamums 3a-
0auy nIaHUPOBAHUsL MPAEKMOPUU 8 3A0a1Y ONMUMUZAYUU.

Xopowo uzeecmHnvl HECKONLKO MUNOE GbIYUCTUMENTbHBIX MEM0008 OJil PEueHUsi 0ZPAHUYEHHBIX CILOJICHbIX Helu-
Hetinbix @yukyuil. Ilpu smom npednacaemcs oupgepenyuanbHblil areopumm 360H0YUU, KOMOPbILL A6IAemcs KOMOU-
Hayuel Mamemamu4ecko2o memooa noucka u arcopumma 3eonoyuu. C e2o nomowbio npeocmasisiemcs 603MONCHbIM
peuierue 0Opamuoll KUHeMamu4eckol 3a0aqu ¢ yiemom moounsnocmu niamgopmel. Kpome moeo, daunwiii memoo
npedomepauiaem noseleHue CUHEYISPHLIX MOYeK, NOCKOIbKY OH He mpebyem uneepcuu mampuysl Axoou.

Pesynbmamol sxcnepumenmanbHo20 MOOeIUPo8aHst Osi NIAHUPOSAHUST MPAEKMOPUL MAHUNYTIAMOPA C WECbIO
cmeneHaMu c80600bl NOOMBEPOUNU YeleCcO0OPA3HOCHb U I PekmusHoCcms npedazaemozo Memood.

KoaioueBsle ciioBa: MaHHITYJISITOp, 0OpaTHAs KHHEMATHKA, META3BPUCTHYECKUE METO/IbL, SBOJIIOLIMOHHBIN aJrOPHUTM,
METO/IbI ONTHMU3ALNH, AU PepeHINATIBHBINA aITOPUTM SBOJIIOLIHH.
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