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Mathematical modeling is created for the mathematical task of spatial motion of the controlled parachute-tether
system of the “wind kite” type. The mathematical model parachute-tether system consists of a model of the main para-
chute and a model of the braking parachute. The parachutes are connected by the tether. The model of the main para-
chute is supposed to be the solid body. This solid body has two planes of symmetry. The braking parachute is the solid
body with axial symmetry. The tether model is an absolutely flexible elastic thread. The tether is connected by ideal
hinges with the main parachute and braking parachute.

The control of the main parachute is carried out by changing the length of the control slings. Changing the length
causes deformation of the dome. This is the reason for the change in its aerodynamics. Maneuvering of the main para-
chute occurs in the vertical plane, when the length of the control slings changes simultaneously. Maneuvering of the
main parachute in space is carried out when the length of the control slings changes, when the slings are given
a travel difference.

The system of dynamic and kinematic equations is designed for calculating the controlled spatial movement of the
main parachute, braking parachute and tether.

The option exists when the mass of the tether and the forces applied to the tether cannot be neglected. The motion
of the tether is represented by the equations of motion of an absolutely flexible elastic thread in projections on the axis
of a natural trihedron. The mathematical model is represented by a system of ordinary differential equations and par-
tial differential equations. The problem is solved using various numerical methods. The solution is possible with the
help of an integrated numerical and analytical approach as well.

Keywords: mathematical model, parachute-tether system, controlled parachute, dome aerodynamics, sling tension force.

Introduction
g I \ he actual problem today is the decanting

of the payload with an accurate delivery to

the required place on the earth’s surface
and the development of technical solutions for this
[1]. This, for example, is associated with the
fastest time to provide assistance to victims, the
elimination of forest fires in hard-to-reach areas,
as well as the risk of losing valuable amphibious
equipment. The task of controlled descent of
parachutes of various configurations was solved,
for example, in [2-5]. Another relevant topic is the
calculation of the parameters necessary for the soft

landing of descent spacecraft (for example,
Churkin V.M., Churkina T.Yu. “Mathematical

model of the motion of a spacecraft with a com-
bined soft landing system”) or the launch of
spacecraft into orbit using cable systems [6], as
well as the removal of spacecraft that have spent
their life from low orbits with landing at a safe
point on the Earth's surface. One of the technically
possible ways to solve such a problem can be the
use of a parachute-tether system (PTS) of the
“wind kite” type, consisting of a main parachute
(MP) and a braking parachute (BP) connected to it
by a tether.

The purpose of the study is to create a rela-
tively simple mathematical model that allows de-
termining the trajectory of the vehicle, and there-
fore the cargo.

© Churkin V.M., Churkina T.Y., Girin A.M., 2022
"DOI: 10.22213/2413-1172-2021-4-17-24 (in Russ.).
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Construction of a mathematical model
of controlled spatial motion
of the “wind kite” type PTS

There are various approaches to modeling and
studying the movement of parachute systems or the
movement of connected bodies [7-9]. The problem
of mathematical modeling and investigation of the
dynamics of the plane motion of a “wind kite” type
PTS was solved in [10], on the basis of which we
will construct a mathematical model of the spatial
motion of such a PTS. Let’s agree to consider the
main parachute as a solid body having two planes of
symmetry, its place of attachment of the parachute
and tether (“koush”) as an ideal hinge, the tether as
an absolutely flexible weightless thread, and the
braking parachute as an axisymmetric solid body.
Let’s assume that the main parachute’s koush — the
pressure center of the dome — and the center of
mass lie on the intersection line of its symmetry
planes. The center of pressure and the center of

Mecrto coenunenus
MapalkoTa 1 Tpoca (Koy)

Place of connection of
parachute and rope (a thimble)

mass of the braking parachute lie at the same point
located on the axis of symmetry of the parachute,
the velocity of the incoming flow is a horizontal
vector, the modulus of which depends only on the
height H, and the changes atmospheric densities p
of altitude H are extremely small. The MP is con-
trolled by changing the length of the control lines,
causing the dome to deformation and, as a conse-
quence, changing its aerodynamics. With a simul-
taneous change in the length of the control lines
by the amount of 5, the MP is maneuvered in a
vertical plane, and when the length of the lines
changes with a difference in stroke OA, spatial
maneuvering of the main parachute occurs. To
simulate the spatial movement of the PTS (see
Figure), the following coordinate systems are
used: the XOYZ absolute system; the X,0,Y,Z;
system connected to the MP; the X,0,Y,Z, system
connected to the tether (rope); the X30;Y3Z; sys-
tem connected to the BP.
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Parachute-rope system scheme of the type of a flying machine

The beginning of the X;0,Y,Z, system is com-
patible with the main parachute’s koush, and the
0.X; axis is directed along the line of intersection
of the planes of symmetry. The beginning of the
X,0,Y,Z, system is also compatible with the main
parachute's koush, and the O,X, axis will be di-
rected along the straight line connecting the O,

point with the koush of the braking parachute. The
beginning of the X30;Y3Z; system will be located in
the center of mass of the braking parachute, and its
axis of symmetry will be chosen as the O;.X; axis.

The dynamic equations of the MP in projections
on the axis of the system X;0,Y,Z; will be written
as
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Here V_,V .,V are the projections of the velocity

ox?" oy?
vector of the main parachute koush; 0,00, —
projections of the vector of the angular velocity of
rotation of the MP; V) - the velocity of the pressure
center of the MP dome relative to the incoming flow

V2=(V,~W,sin®,cosy,) +

+ (Voy —W,cosb, cosp, —m_[, )2 +
+ (VOZ + W, cosy,cos@, + o/, )2 ,
where W, is the wind speed at the height H, of the

main parachute’s koush; m is the mass of the main
parachute; J ,J .J_,J ,J ,J. — axial and cen-

xy 2 yx?
trifugal moments of inertia of the main parachute
relative to the axes of the associated coordinate sys-
tem; Xl.j (i,j =1..., 6) — coefficients of the at-

tached masses of the main parachute dome;
R,..R,,,R, — projections of the vector of the cable

tension force in the main parachute’s koush,

Ox> "0y

_ L2121 2.
R =R, (a13a13 T ayay; + a33a33),
_ 121 2 1 2,
Ry, =R, (a12a13 T ayay; + a3a;, )v
_ R N T R R
R,. —Ro(auals a0y + a31a33)’
J_ )
aj, =cosy;cosQ;;
al, =sin® siny, cosq, —cosO . sing ;
12 J J J J J?
al, =cos0.siny . cos@, +sin® sin@ ;
13 j j j j E
Jo— : .
a;, =cosy,sing;;
al, =sin0siny.sin@ . +cosO . coso ;
2 j j j j J?

j _ . . . .
ay, =cosB;siny; sin@; —sin6, cos ¢ ;
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dynamic forces and moments of the dome of the
main parachute,

aj, =cos0 cosy, C,=C.(0,p,,8,8,); C,=C, (0,.B,,8,8,);
Cz :CZ(G‘I’BI’S’SA); mx :mx(a‘l’Bl’S’SA);

i —_ginv.: a4’ =si .
aj, =—siny;; az, =sin6;cosy,;

where 0,,7,,0, are the angles of rotation of the
main parachute relative to the axes of the systems m, =m,(0,,B,,8,8,); m.=m.(0,,B,.8,3,);

X0 Y, Z, (when j = 1) and X,0,Y,Z, (When o g, _ angles of attack and sliding of the main
j=2) Cx,Cy,Cz,mx,my,mz — coefficients of aero-  parachute dome,

\/(Voy —W, cosO, cos, —oole)z +(VOZ + W, cosy, coso, +o [, )2 .

2

o, = arctg -
: V. —W,sin6, cosy,

V.. +W,cosy, coso, + [, J

= arctg| —
g g[Voy —W,cosb,cosp, —m_,

0z3

center of mass and the center of pressure of the main
parachute dome, respectively; S is the characteristic
area of the main parachute dome; p is the air density.
When conducting trial calculations for modeling (

3

where [.,[, are the distances from the koush to the v, ,
m, d; +V o, -V 0,

=—0,5pS,Vy; xC,; +mygsin;cosy, + R
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dt + V:)y3(013 - V:)x3('0y3 j =

By3>

the spatial motion of a descending object with
a controlled parachute, dependencies with the fol-
lowing structure were used for the coefficients
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(CyOI + C lla‘ + C 21a‘l + C 31a‘1 41a‘l )
vector of the center of mass BP; o ;,0,,,0_; - pro-

2

(C;Oz +Cy0y +C oy +Cpa +C 0 )6 + jections of the angular velocity vector of rotation

(C;03 +C, 50, +C, 507 +C a0 +C 0 )53 + BP; VO.3 - Ve.lomty of the center of mass BP relative
to the incoming flow,

+(Cou+C

4.
yl4al + CvyZ4a‘l + Cvy34a‘l + Cy44a’1 )8 >

V;)ZS :(I/ox3
C.=(C,y+C,a,)(B,+5,). +(

For a braking parachute, the dynamic equations
in projections on the axis X, 0,7, Z, of the system

— W, sin0, cosy, )2 +
v

3 —W;cosB COS(p3)2 +
+(V,.+W, COS’Y3COS([)3) ,

are presented as follows: where W, is the wind speed at the height /, of the

dav . _ .
m{ d;u +V o, - Voﬁmﬁj _ center of mass of the BP; m; — the mass of the BP;

=—0,5p8,V;; x C 4 +m,gcos0,cosy, + R, ;; axes O, and O,Z;; Ry, R, 5, R, — the projec-

J, — the moment of inertia of the BP relative to the
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tion of the vector of the tension force of the tether
in the BP koush,

_ 32,03 2 2 2.
Rys =Ry (“13“13 T ayay; + a3dy, )’

302 3.3, 3 2.
Ry =Ry (alzan Tayndy + a32a33)=

_ 3 2 3 2 3 2.
Rys =Ry (auan +ayay; +a;,0;; ),

0,,7;,¢, — the angles of rotation of the BP relative

to the system; C;,C ;,C_;,m ;,m_5 — coefficients

¥3°
of the aerodynamic forces and moments of the BP,

Cu;=C, (OL3); Cy3 = Cy3 (OL3); C;=C, (OL3);
m,; =my3(oc3); m,; =m23(a3);

o, —angle of attack BP,

o, =arctg

. 2 )
V=W, c080,sin, ) +(V,., +,cosy, coso,)

v

ox3

[, — the distance from the koush BP to its center of

mass; S, — the characteristic area of the dome is
BP.

The dynamic equations (1) and (2) are supple-
mented by the following kinematic equations:

do, )
yr =w,sinb, tgy; +o_;
99 _ o s 0 +o_; 3
7 =, sin0, secy; +_; 3)
dy,
J_ P
% =0, cosej, j=12,3.
2 2 _ 3
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3 3 1
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2 2 _ 3
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where V.

ox?

VyVs ©,0,,0, — projections on the

axis X, 0,7, Z, of the system of the koush velocity

B

— W, sin0, cosy,

vector of the main parachute and the angular veloc-
ity vector of the rotation of the main parachute, re-
spectively; /, - the distance between the couches of

the main parachute and the braking parachute;
x,v,z - the coordinates of the main parachute's

koush in the system XOYZ.

In cases where the main and brake parachutes
are connected by a long tether, the mass of which
and the forces applied to it cannot be neglected,
the equations of motion of the main and brake
parachutes are supplemented by the equations of
motion of the tether, as which the equations of
motion of an absolutely flexible elastic thread,
recorded in projections on the axis, can be used
natural trihedron:
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D g,
oo
d_o
oo

where V_,V ,V, — projections of the absolute veloc-
ity vector of the rope element; o_,»,,», — projec-
tions of the absolute angular velocity vector of the
rope element; Q_,Q, — projections of the Darboux
vector; o — the arc coordinate of the tether’s ele-
ment; ¢, 6 — the angles of curvature and torsion of
the tether; 7 — the tension force of the tether; m, —

the linear density of the stretched tether; f — the co-
efficient of tension of the tether,

m
f: TO,

mT
where m,, — linear density of an unstretched tether;
R.,R
tant of external forces applied to the tether.

If the stretching of the tether obeys Hooke's law,
then

R, — projections of the vector of the resul-

no

f=1+aT,

where a — specific elongation of the tether,

o=—,
E

where £ — modulus of elasticity of the tether.
The equations of the system (6) must be solved
under boundary conditions, which are the equations

of the system (1) at 6=0 (V' =V¥,,T =R,) and the
equations of  system 3) for
(V =V, T =Ry), where [ — tether length.

Conclusions

1. A mathematical model of the spatial motion
of the PTS is constructed taking into account the
equations of motion of the tether in the form of sys-
tems of non-linear ordinary differential equations
and partial differential equations.

2. The compilation of a system of dynamic and
kinematic equations of spatial motion of a con-
trolled PTS allows us to evaluate the main dynamic
characteristics of the designed PTS and calculate
their design parameters.

3. The obtained results can be used to determine
the parameters of soft landing of descent spacecraft
and aviation parachute systems, to calculate the
operability of the elements of the PTS structure tak-
ing into account the dynamics of loading [11].

o=1

4. It should be noted that the greatest difficulties
are caused by the study of the movement of the
tether. A large number of publications by both do-
mestic and foreign authors have been devoted to
solving this problem. Moreover, such a task arises
when studying the movement of the tether in vari-
ous environments and not only for the PTS [12-16].
The calculation of tether systems is proposed for
use during the descent of spent spacecraft and even
in green energy systems [17-20], where various
methods of numerical solution of the equations of
tether movement are described. The analytical
analysis of the dynamics of cable systems is based
either on the linearization of the equations of mo-
tion of the cable, or on their extreme simplification
and replacement by equations of model problems of
mathematical physics. In a number of papers, it is
proposed to use a complex numerical-analytical
approach. The method of characteristics has be-
come the most widespread, in which the analytical
part of the study includes finding characteristics
and recording the corresponding characteristic
equations, and their integration is performed on
a computer.
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(HamuonanpHbIi HccnenoBaTebcKuil yHUBEpCUTET), MockBa, Poccust

T. FO. Yypruna, KanquaaT TEXHUYECKUX HayK, MOCKOBCKUI aBUAlTUOHHBIN UHCTUTYT
(HanuonanpHbIi nccnenoBaTebcKuil yHUBEpeUTeT), Mocksa, Poccust

A. M. I'upun, KaHIUJAT TEXHUYECKUX HayK, MOCKOBCKUM aBUALMOHHBI HHCTUTYT
(HanmoHaIbHBIN HCCIIeOBATENBCKI YHUBEPCHTET), MockBa, Poccus

IIpedcmaeneno mamemamuyeckoe MOOEIUPOSAHUE NPOCMPAHCIMEEHHO20 OBUNCEHUSI YIPAGISAEMOU NAPAUIOMHO-
MpOCOBOIL cucmemuvl muna «gemponemy. Paccmampusaemas cucmema npedcmagisiemest MoOenvio, COCMAGNEHHOU U3
OCHOGHO20 NAPAUIOMA U MOPMO3HO20 NAPAULIOMA, COCOUHEHHbIX Mpocom. OCHOGHOU NApauliom CYumaemcs meep-
ObLM MeNoM, UMEIWUM 08¢ NIOCKOCMU CUMMEMPUYU, A MOPMO3HOU NAPAWMION — 0CECUMMEMPUUHBIM MEepObLM me-
aom. Tpoc pacecmampugaemcs kak abconomuo cubKas ynpyedas Humb, COCOUHEHHAs UOCANbHLIMU UAPHUPAMU C OC-
HOGHbIM U MOPMO3HbIM RAPAWIOMAaMU. YApagienue OCHOSHbIM NAPAUIOMOM OCYWECMEISeMcs nymem U3MeHEeHUs.
ONUHBL YIPABTAIOWUX CIPON, bI3bIEAIOUe20 0ePOPMAYUIO KYNOIA U, KAK CAeOCmEuUe, USMeHeHue €20 aapoounaMuKy.
Ipu 00no8pementom usmeHenuu Onunbl YAPAGIAIOWUX CIMPON NPOUCXOOUM MAHEEPUPOBAHUE OCHOBHO20 NAPAWIOMA
6 6EPMUKANIBHOU NIOCKOCMU, A NPU USMEHEHUU ONUHbL YNPAGIAIOUUX CMPON C 3A0AHHOU PA3HOCMbIO X00d — Npo-
cmpancmeennoe Manespuposanue ocHosHo2o napawioma. Cocmasnena cucmema OUHAMUHECKUX U KUHeMAMUYECKUX
VPAGHEeHUll NPOCMPAHCNBEHHO20 OBUNCEHUSL OCHOBHO20 RAPAWMIOMA, TMOPMO3H020 napawioma u mpoca. B ciyuasx,
K020a OCHOBHOU U MOPMO3HOU NAPAWIOMbL COCOUHEHbL MPOCOM, MACCOU KOMOPO20 U NPUTONCEHHBIMU K HeMY CULAMU
npenebpeus Heb3sl, €20 08UNCEHUEe NPEOCMABNACINCS YPAGHEHUAMU OGUICEHUSI AOCONIOMHO 2UOKOU Ynpyeou Humu
6 NPOEKYUSIX HA OCU eCMEeCMEEHHO20 MpexepannuKa. B pesyismame npeonacaemas Mamemamuieckas Mooeib npeo-
CMABAAEMCcsl CUCIEMOU 0DLIKHOBEHHBIX OUDPePeHYUATbHBIX YPAGHEHUT U OUDDePEeHYUATbHBIX YPAGHEHUTI 8 YACHHBIX
NPOU3BOOHBIX, O/ PEULeHUsL KOMOPBIX MO2YI Gblib UCTIONb3068AHbL PA3IUYHBLE YUCTEHHbIe MemOObl Ul KOMIIEKCHDbIIL
YUCTIeHHO-AHATUMUYecKull nooxod. Hanpumep, npu peuwieHuu Memooom Xapaxmepucmux aHaIumui4ecKkas 4acmy uc-
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CNe00B8aHUSL BKIIIOYAET HAXONCOCHUE xapakmepucmuk U 3anucb coomeemcmeyromux xapakmepucmuiecKkux ypaerHe-
Hutl ¢ nocxzedyiomww UX YUCIHeHHbIM URMe2PpUPOBAHUEM.

KiroueBnble ciioBa: mMaremarudeckas MOENb, MapalllOTHO-TPOCOBAsl CHCTEMa, YHPaBseMbI MapaloT, a3poIHa-
MHKa KyII0Jia, CHJIa HAaTsDKEHUs Tpoca.
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