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В работе представлена инновационная система, которая позволяет напрямую связывать виртуальную среду, создан-

ную с помощью игрового движка Unity, с промышленным роботом-манипулятором KUKA KR-6 на примере тренажера 
антропоморфного робота для студентов, обучающихся на стоматологических специальностях. Преимущество новой 
архитектуры заключается в том, что она исключает необходимость применения промежуточных программных реше-
ний. Команды управления и координаты  передаются напрямую с контроллеров VR-шлема на реальный объект (робот + 
манипулятор) без привлечения сторонних драйверов и программных мостов. Для реализации взаимодействия был создан 
специальный сокет-сервер на языке программирования C#. Благодаря этому удалось добиться высокой точности пози-
ционирования (погрешность составляет менее 1 мм) и минимизировать задержки при передаче данных через локальную 
сеть. Чтобы сделать обучение более реалистичным, система обеспечивает двусторонний обмен данными между реаль-
ным положением робота-пациента, манипулятором и виртуальным пространством. Три трекера HTC ViveTracker от-
слеживают координаты физического объекта (робот + манипулятор), которые затем автоматически переносятся 
в виртуальную сцену Unity. Таким образом, достигается полное соответствие между реальным и виртуальным пациен-
тами. Испытания системы показали ее стабильность и возможность интеграции в уже существующую образователь-
ную VR-платформу. Это позволит студентам отрабатывать коммуникативные и практические навыки, необходимые 
для выполнения стоматологических процедур. Разработанное решение открывает новые перспективы для использования 
виртуальной и смешанной реальности в медицинском образовании. Потенциально оно может быть адаптировано и для 
других сфер профессиональной подготовки. 

 
Ключевые слова: VR-технологии, Unity, тренажер для стоматологов, KUKA KR-6, сервер на C#, виртуальная симуляция, 
трекеры HTC Vive. 

 
 

Введение 
настоящее время прогресс в сфере техноло-
гий виртуальной и дополненной реальности 
(VR/AR) заметно трансформирует подходы 

к профессиональному обучению в медицинской 
сфере. В частности, в стоматологическом образова-
нии всё более важную роль играют специализиро-
ванные симуляторы, которые дают возможность 
совершенствовать сложные практические и комму-
никативные умения без какого-либо риска для па-
циентов. Однако многие из существующих VR-сис-
тем работают в изолированной виртуальной среде 
и не предусматривают интеграции с реальными ро-
ботизированными устройствами, что не позволяет 
в полной мере развивать у обучающихся простран-
ственное мышление и моторную память [1]. Ранее 
уже предпринимались попытки создать интерак-
тивные обучающие системы. Например, на плат-
форме Unity была разработана система для отработ-
ки навыков врачей-стоматологов [2]. Она преду-

сматривала наличие виртуального пациента, де-
тально проработанный сценарий взаимодействия 
и механизмы обратной связи. Однако связь между 
виртуальной средой и реальными устройствами 
реализуется через стороннее ПО RoboDK Bridge, 
что приводит к определенным задержкам и зависи-
мости от дополнительных драйверов [3–5]. 

В предлагаемой разработке реализовано более 
совершенное решение. Создана система, которая 
обеспечивает непосредственное взаимодействие ме-
жду VR-средой, роботом-пациентом и роботом-
манипулятором KUKA KR-6 [6–8]. Основа системы – 
собственный сокет-сервер, написанный на языке C#. 
Он позволяет осуществлять двусторонний обмен 
координатами и командами через локальную сеть. 
Кроме того, реализован механизм, который передает 
информацию о положении робота-пациента обратно 
в VR-сцену. Для этого используются данные от трех 
трекеров HTC ViveTracker. Благодаря этому достига-
ется высокая степень соответствия между физиче-
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ским и виртуальным миром. В результате действия 
обучающегося в виртуальной реальности гармонич-
но синхронизируются с движениями реального робо-
та, что создает эффект «смешанной» реальности 
и открывает новые горизонты для иммерсивного 
обучения [9–11]. 

Целью исследования является создание системы 
прямого взаимодействия между VR-тренажером 
и роборукой KUKA KR-6. 

Для достижения поставленной цели были постав-
лены и решены следующие задачи: 

1. Точность передачи координат и ориентации от 
контроллеров VR к роботу. 

2. Стабильность соединения и время отклика при 
двустороннем обмене. 

3. Эффективность обратной синхронизации по-
ложения пациента. 

4. Применимость системы в образовательной 
среде. 

Материалы и методы 
Разработка программно-аппаратного комплекса 

прямого взаимодействия между VR-средой, роботом-
пациентом и роборукой KUKA KR-6 выполнялась на 
основе ранее созданного интерактивного стоматоло-
гического тренажера, реализованного в среде Unity 
3D (версия 2022.3.7f1) [12–14]. Базовый симулятор 
включал виртуальную сцену стоматологического 
кабинета, аватара пациента и набор инструментов, 
с помощью которых обучающийся выполнял сцена-
рий лечения хронического фиброзного пульпита. 
Новая версия тренажера была расширена функцио-
налом прямой связи с реальным промышленным ро-
ботом и возможностью зеркалирования положения 
пациента из физического мира в виртуальную среду. 

Архитектура комплекса основана на трех про-
граммных модулях (рис. 1). 

На рисунке 2 приведен скриншот из виртуальной 
реальности. 

 

 
Рис. 1. Архитектура комплекса 

Fig. 1. Architecture of the complex 

 
Рис. 2. VR-пространство, подготовленное к совмещению с реальным 

Fig. 2. VR space prepared for integration with the real world 
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времени отклика (до 0,015 с против 0,08 с при ис-
пользовании RoboDK Bridge). При этом точность 
позиционирования конца робота при манипуляциях 
в пределах 100×100×100 мм составила менее 1 мм, 
что полностью удовлетворяет требованиям для сто-
матологических обучающих симуляторов. 

Перенос положения робота-пациента  
в VR-среду 
Для достижения максимальной реалистичности 

обучения и ощущения присутствия обучающегося 
в рабочем пространстве стоматологического кабине-
та реализован механизм двустороннего обмена дан-
ными между реальной и виртуальной системой. Этот 
механизм обеспечивает синхронное соответствие 
положения и ориентации робота-пациента в физиче-
ском пространстве и его виртуального аналога в сце-
не Unity [20, 21]. 

Принцип работы системы обратного  
отображения 
1. Реализация функции переноса положения ос-

нована на использовании трех трекеров HTC 
ViveTracker 3.0, закрепленных на корпусе антропо-
морфного робота-пациента: 

 трекер T1 закреплен в области головы пациента 
и определяет ориентацию черепа относительно оси Y; 

 трекер T2 установлен на грудной клетке, задает 
продольное положение корпуса; 

 трекер T3 расположен в нижней части корпуса 
(в районе таза), фиксирует повороты и наклоны ту-
ловища. 

2. Каждый трекер формирует поток данных о по-
ложении (X, Y, Z) и ориентации (кватернион), кото-
рые передаются в Unity через стандартный драйвер 
SteamVRInput System с частотой 60 Гц. 

3. На основании трех пространственных векторов 
формируется матрица преобразования, описывающая 
положение тела пациента в системе координат сцены 
VR. Эта матрица обновляется в реальном времени 
и используется для позиционирования виртуальной 
модели пациента. 

Калибровка системы координат 
Поскольку физическая и виртуальная сцены не 

имеют единой абсолютной системы координат, на 
этапе инициализации проводится ручная калибровка. 

Процедура выполняется следующим образом. 
1. Робот-пациент устанавливается в исходное 

(нейтральное) положение. 
2. В Unity активируется режим калибровки, при 

котором пользователь визуально совмещает вирту-
альные маркеры (реперные точки) с положением 
трекеров T1–T3. 

3. Сохраняются параметры смещения и масшта-
бирования, формирующие калибровочную матрицу 
Mcal. 

4. При каждом последующем запуске симулятора 
виртуальные координаты пациента пересчитываются 
по формуле ,vr cal realP P   где realP  – координаты, 
полученные от трекеров; vrP  – координаты вирту-
альной модели в сцене Unity. 

После выполнения калибровки система автома-
тически поддерживает согласованность движений 
между реальным роботом и его виртуальной копией. 

Алгоритм синхронизации и фильтрации данных 
1. Потоковые данные от трекеров HTC ViveTracker 

содержат незначительные флуктуации из-за вибра-
ций и системных шумов. Для их устранения исполь-
зуется фильтр скользящего среднего с окном из пяти 

последних измерений    
4

0

1 .
5f

i
P t P t i



   

2. После фильтрации координаты объединяются 
в единую модель положения пациента, включаю-
щую: 

 центральную точку  1 2 3 3;C T T T    
 ориентацию, вычисляемую методом наимень-

ших квадратов между векторами T1–T3; 
 угловые параметры (pitch, yaw, roll) для плавно-

го отображения наклонов туловища. 
Полученные параметры передаются в модуль 

Patient Controller в Unity, где осуществляется обнов-
ление позы 3D-модели пациента через стандартную 
систему анимации HumanoidRig [3]. 

Визуализация и взаимодействие в VR-сцене 
После включения синхронизации обучающийся, 

находясь в VR-шлеме, видит пациента, положение 
и движения которого полностью совпадают с поло-
жением реального антропоморфного робота. При 
этом любые перемещения или наклоны физического 
пациента мгновенно отражаются в VR-среде. 

Кроме того, для обеспечения дополнительной на-
глядности в сцене активируется VR-оверлей с пара-
метрами телеметрии (положение трекеров, углы на-
клона, расстояние до инструмента). Это позволяет 
преподавателю в режиме реального времени отсле-
живать точность манипуляций и корректировать 
действия обучающегося. 

Технические характеристики и результаты  
испытаний 
В ходе тестовых измерений были получены ре-

зультаты синхронизации между реальным и вирту-
альным пациентом (таблица 1). 

 
Таблица 1. Результаты синхронизации между реальным  
и виртуальным пациентом 
Table 1. Synchronization results between a real  
and a virtual patient 

Параметр Среднее  
значение Отклонение 

Частота обновления координат 60 Гц ±2 Гц 
Время отклика 18 мс ±3 мс 
Средняя погрешность совмещения  
позиций 0,9 мм ±0,2 мм 
Угловая погрешность ориентации 0,4гр ±0,1 гр 

 
Погрешность менее 1 мм подтверждает коррект-

ность калибровки и эффективность фильтрации. 
Таким образом, даже при длительном сеансе 
(30…40 мин) наблюдается устойчивая работа систе-
мы без накопления систематического дрейфа. 

 



ISSN 1813-7903. Вестник ИжГТУ имени М. Т. Калашникова. 2025. Т. 28, № 4 

 

8 

Практическое значение 
Создание модуля обратной синхронизации по-

зволило значительно расширить функциональность 
VR-тренажера. Теперь преподаватель или наблюда-
тель может управлять реальным роботом-пациентом, 
а обучающийся в VR видит все движения в интерак-
тивной сцене с полной пространственной синхрони-
зацией. 

Такое решение открывает следующие возмож-
ности: 

 проведение удаленных практических занятий, 
где VR-обучающийся взаимодействует с физическим 
роботом в лаборатории; 

 внедрение дистанционных лабораторных прак-
тикумов по стоматологии и хирургическим манипу-
ляциям; 

 интеграция системы с аналитическими модуля-
ми ИИ для автоматической оценки траекторий и уг-
лов работы инструментов. 

Полученные результаты и их обсуждение 
Разработанная система прямого взаимодействия 

между VR-средой, роботом-пациентом и роборукой 
KUKA KR-6 была протестирована в условиях лабора-
тории Пермского национального исследовательского 
политехнического университета. Испытания проводи-
лись на учебном стенде, включающем VR-тренажер 
Unity, робота-пациента, роборуки KUKA KR-6, кон-
троллер KRC4 и трекеры HTC ViveTracker. 

Ранее реализованная версия тренажера использо-
вала программный мост RoboDK Bridge, обеспечи-
вающий обмен данными между Unity и контролле-
ром KUKA через промежуточные драйверы. Это 
решение требовало установки стороннего ПО, ис-
пользовало многослойную маршрутизацию данных 
и имело суммарную задержку порядка 70…80 мс. 

В предлагаемой версии взаимодействие осущест-
вляется напрямую через локальную сеть с помощью 
собственного C#-сокет-сервера, что позволило суще-
ственно повысить производительность и стабиль-
ность системы (табл. 2). 

 
Таблица 2. Показатели сравнения двух версий системы 
Table 2. Indicators for comparing two versions  
of the system 

Показатель Предыдущая версия 
(RoboDK Bridge) 

Новая версия 
(C# Socket Server) 

Средняя задержка  
передачи 70…80 мс 10…15 мс 
Погрешность  
позиционирования  
конца робота 2,5…3 мм < 1 мм 
Частота обновления  
данных 20 Гц 50 Гц 
Зависимость  
от стороннего ПО Высокая Отсутствует 
Устойчивость  
соединения Средняя Высокая 

 
Сокращение задержки более чем в 5 раз обеспе-

чило естественное соответствие движений VR-кон-
троллеров и манипулятора, а также значительно 

улучшило тактильное восприятие при работе с вир-
туальными инструментами. 

Оценка точности позиционирования 
Для проверки точности передачи координат была 

проведена серия из пяти испытаний, в ходе которых 
фиксировалось фактическое положение фиксатора 
манипулятора относительно заданной виртуальной 
траектории. Измерения выполнялись с помощью ла-
зерного дальномера и эталонной шкалы. 

Результаты показали, что средняя погрешность 
позиционирования составила 0,87 мм, а максималь-
ное отклонение не превышало 1,3 мм. Это значение 
находится в пределах допустимого диапазона для 
стоматологических манипуляторов, где точность 
менее 2 мм считается высокой. 

Кроме того, при циклических движениях робота 
с частотой обновления 50 Гц не наблюдалось накоп-
ления систематического дрейфа, что подтверждает 
корректную работу алгоритмов фильтрации и интер-
поляции координат. 

Анализ времени отклика и плавности управления 
Среднее время отклика от момента движения 

контроллера VR до начала перемещения манипуля-
тора составило 11…15 мс, что сопоставимо с поро-
гом восприятия человека (≈ 20 мс). Это обеспечило 
ощущение непрерывности движений и позволило 
выполнять стоматологические манипуляции без ви-
зуальных задержек. 

Визуальное сглаживание обеспечивается интер-
поляцией координат между последовательными па-
кетами данных, что особенно важно при выполнении 
микродвижений в пределах 1…2 мм. 

При нагрузочном тесте продолжительностью 
30 мин система продемонстрировала стабильную 
работу без разрывов соединения и пропусков кадров. 

Эффективность двусторонней синхронизации 
Модуль переноса положения пациента на основе 

трекеров HTC Vive Tracker показал высокую устой-
чивость к внешним помехам. Средняя угловая по-
грешность ориентации виртуального пациента отно-
сительно реального составила 0,4 ± 0,1 гр, а линей-
ное расхождение – 0,9 мм. 

Такая точность позволила достичь эффекта пол-
ного совпадения позиций пациента в виртуальной 
и реальной среде. Обучающийся, находясь в VR-шле-
ме, воспринимает физические движения робота-
пациента как действия виртуального аватара, что 
создает естественный эффект присутствия и «реаль-
ной» работы с пациентом. 

Образовательные преимущества и практическая 
применимость 

Интеграция реального манипулятора KUKA 
в VR-тренажер открыла новые возможности для 
обучения стоматологов: 

 формирование моторных навыков – студенты 
получают тактильную и визуальную обратную связь, 
аналогичную реальной процедуре лечения; 

 отработка коммуникативных сценариев – вир-
туальный пациент реагирует на действия пользова-
теля и команды преподавателя, что помогает разви-
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вать врачебную этику и взаимодействие с пациен-
том; 

 повышение безопасности обучения – все мани-
пуляции выполняются в виртуальной среде без риска 
для человека; 

 возможность дистанционного обучения – сис-
тема позволяет преподавателю управлять реальным 
роботом, а обучающийся может находиться в другом 
месте, подключившись через VR-шлем. 

Таким образом, проект объединяет преимущества 
инженерных систем реального времени и VR-обра-
зования, реализуя принципы технологий Образова-
ние 4.0. 

Обсуждение результатов 
С точки зрения технической реализации, предло-

женная архитектура продемонстрировала: 
 надежность передачи данных при частоте 50 Гц; 
 линейную зависимость времени отклика от на-

грузки сети (при загрузке до 30 %); 
 отсутствие деградации точности при длитель-

ных циклах. 
С точки зрения образовательной эффективности 

использование системы в пилотной группе (5 сту-
дентов-ординаторов) позволило зафиксировать 
улучшение показателей точности движений при вы-
полнении виртуальных процедур на 12 % по сравне-
нию с обучением только в VR-среде. 

Таким образом, созданный комплекс подтвердил 
свою состоятельность как инструмент интеграции 
реальной робототехники и виртуальной стоматоло-
гической подготовки. 

Выводы 
Разработана и экспериментально апробирована 

система прямого взаимодействия между VR-трена-
жером для отработки коммуникативных и практиче-
ских навыков по выполнению лечебных процедур 
врачей-стоматологов роботом-пациентом и промыш-
ленным роботом-манипулятором KUKA KR-6. 

Поставленные цели и задачи достигнуты. 
Главным результатом исследования стало созда-

ние единой программно-аппаратной среды, объеди-
няющей виртуальную симуляцию, реальный робото-
технический комплекс и систему пространственного 
слежения на базе HTC ViveTracker. Это позволило 
достичь синхронного взаимодействия между вирту-
альными и физическими объектами без использова-
ния промежуточных драйверов или стороннего ПО. 

Кроме того, достигнуты следующие результаты. 
1. Разработана архитектура прямого обмена дан-

ными между Unity и KUKA KR-6 с использованием 
собственного сокет-сервера на C#, обеспечивающего 
передачу координат и ориентации в реальном време-
ни. Средняя задержка передачи составила 10…15 мс, 
что в пять раз меньше, чем при использовании стан-
дартных решений типа RoboDK Bridge. 

2. Реализована система обратной синхронизации 
положения робота-пациента с помощью трех треке-
ров HTC ViveTracker. Обеспечена точность про-
странственного совмещения менее 1 мм и угловая 
погрешность не более 0,4 гр, что гарантирует совпа-
дение реального и виртуального положений. 

3. Проведено тестирование стабильности систе-
мы, подтвердившее устойчивую работу при длитель-
ных сеансах (до 40 мин) и отсутствие накопления 
систематического дрейфа координат. 

4. Достигнута высокая образовательная и практи-
ческая ценность: обучающиеся получают возмож-
ность отрабатывать действия с реальными роботизи-
рованными устройствами в безопасной виртуальной 
среде, что формирует устойчивые моторные и когни-
тивные навыки, повышает вовлеченность и качество 
подготовки. 

Таким образом, разработанный VR-тренажер 
представляет собой инновационный инструмент, 
объединяющий технологии виртуальной реальности, 
робототехники и имитационного обучения, соответ-
ствующий концепции Образование 4.0. 

Дальнейшие исследования планируется напра-
вить: 

 на интеграцию модуля искусственного интел-
лекта для автоматической оценки действий обучаю-
щегося по параметрам траектории и давления инст-
румента; 

 внедрение биомеханических датчиков для реги-
страции усилий и обратной тактильной связи; 

 реализацию мультиагентной VR-среды, где 
преподаватель и несколько студентов могут одно-
временно взаимодействовать с роботом-пациентом 
в одном виртуальном пространстве; 

 создание облачного интерфейса удаленного 
доступа, позволяющего использовать систему в дис-
танционном формате. 

Предложенный подход демонстрирует, что объе-
динение технологий VR, сетевого программирования 
и промышленной робототехники может стать осно-
вой для создания нового поколения учебных симуля-
торов не только в стоматологии, но и в других облас-
тях медицинского и инженерного образования. 

Результаты исследования могут быть использова-
ны при проектировании комплексных образователь-
ных платформ, включающих роботов, устройства 
дополненной реальности и интеллектуальные моду-
ли анализа действий обучающихся. 
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This publication describes an innovative system that directly links a virtual environment created with the Unity game engine to 

a KUKA KR-6 industrial robotic manipulator. The solution is intended for use in dental education. The key advantage of the new 
architecture is that it eliminates the need for intermediate software layers: control commands and coordinates are transmitted di-
rectly from VR headset controllers to the real robot, without third-party drivers or software bridges. To implement the interaction, 
a dedicated socket server was developed in C#. This approach achieves high positioning accuracy (error less than 1 millimeter) 
and minimizes data-transfer latency over the local network. To make training more realistic, the system enables bi-directional data 
exchange between the real position of the robot “patient” and the virtual space. Three HTC Vive Trackers capture the coordinates 
of the physical object, which are then automatically mirrored in the Unity virtual scene, ensuring full correspondence between the 
real and virtual patients. System trials demonstrated stability and the feasibility of integrating the solution into an existing educa-
tional VR platform. This will allow students to master the communication and practical skills required for treating chronic fibrous 
pulpitis. The proposed solution opens new prospects for the use of virtual and mixed reality in medical education and can potential-
ly be adapted to other professional training domains. 

 
Keywords: VR technologies, Unity, dental training simulator, KUKA KR-6, C# socket server, virtual simulation, HTC Vive trackers. 
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