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Основное назначение виброизолирующих конструкций – поглощение возмущений от источника на амортизируемый 

объект или с объекта на основание технической системы. Соответственно, возникает задача обеспечения виброзащиты 
амортизируемого объекта и виброизоляция источника возмущений. Наиболее важной частью любого типа виброизоля-
тора является его упругий элемент, изготавливаемый из эластичного материала. Конструкция виброизоляторов должна 
обеспечивать возможность их использования как в опорной, так и в подвесной схемах нагружения. Конструктивное ис-
полнение технических систем в особых случаях не предусматривает замены виброизоляторов предельно долгое время. 
Применение резинометаллических виброизоляторов в системах виброзащиты механизмов и оборудования, функциони-
рующих в условиях повышенных вибрационных нагрузок продолжительный срок, требует оценки их ресурсных показате-
лей с целью определения возможности дальнейшей эксплуатации. С этой целью в настоящей работе представлена ме-
тодика экспериментальных работ, на основе которой  могут проводиться исследования резинометаллических виброизо-
ляторов с нелинейными нагрузочными характеристиками. Определена амплитудно-температурная модель эксплуатации 
виброизолятора, исследованы шесть режимов динамического нагружения конструкции при различных амплитудно-
частотных и температурных нагрузках. При этом исследовалось напряженно-деформированное состояние резинового 
массива конструкции. В результате проведенных работ выявлены три предельных состояния, определяющие работоспо-
собность изделия, – деформация ползучести, жесткость, прочность – и установлены их критерии. Степень разрушения 
резинометаллических виброизоляторов оценивается по изменению  перечисленных выше основных эксплуатационных ха-
рактеристик. Работоспособность виброизолятора в целом будет зависеть от прочностных характеристик резинового 
массива, который является наиболее уязвимым элементом конструкции. При разработке резинометаллических виброизо-
ляторов следует стремиться к равномерному распределению напряжений в резиновом массиве и исключать их концен-
трации. Применение разработанной методики экспериментальных исследований позволяет определять ресурс и прогно-
зировать срок службы виброизоляторов систем защиты от вибрационных и ударных нагрузок авиационного оборудова-
ния. 
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Введение 
связи с созданием современной высокотех-
нологичной техники в энергетической 
и авиационной отрасли, воздействием виб-

рационных и ударных нагрузок при эксплуатации 
возможны повреждения и преждевременные отказы  
приборов и оборудования. Из этого следует, что од-
ной из актуальных задач является разработка эффек-
тивных систем защиты механизмов и их элементов 
от вибрационного и ударного воздействия. 

Одним из современных способов виброзащиты 
является применение виброизоляции, при котором 
между объектом и основанием устанавливается виб-
роизолятор, препятствующий передаче колебатель-
ных нагрузок от источника на защищаемый элемент. 
Вибрации возникают при работе двигателей, насо-
сов, бортового оборудования авиационной техники 
и ударных воздействиях. Негативное воздействие 
вибрационных колебательных процессов снижает 
эксплуатационный срок рассматриваемого оборудо-
вания. Кроме того, повышенные требования к на-
дежности подобного рода оборудования и тенденция 

к увеличению ресурсных показателей определяют 
цель создания методик проведения эксперименталь-
ных исследований по определению действительного 
технического состояния отработавших или находя-
щихся в эксплуатации виброизоляторов с возможно-
стью продления их срока службы.  

В работах многих авторов уделено внимание тео-
ретическим и исследовательским аспектам виброза-
щитных методов и средств [1, 2], в том числе и тео-
рии, рассматривающей нелинейные эффекты, резко 
ухудшающие виброзащитные характеристики и при-
водящие к интенсивному механическому воздейст-
вию на оборудование [3]. 

В эксплуатационном режиме механизмы и обо-
рудование должны быть обеспечены виброзащи-
той от постоянно действующей вибрационной  
нагрузки в диапазоне частот 10…2000 Гц с ампли-
тудой 0,5…1,0 мм и ударных воздействий макси-
мального ускорения до 4g, возникающих, напри-
мер, при запуске и остановке высокоэнергетиче-
ского оборудования, взлете и посадке авиационной 
техники.  

В 
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В случае нелинейного характера нагружения вида 

P = C1ε + C2ε
2, 

значение жесткости рассчитывается по формуле 

 
,

1

P
C 

  
 

где 2 1C C   – экспериментальный коэффициент 

нелинейности. 
Исходя из общепринятых положений, процесс раз-

рушения резины происходит в несколько этапов [8, 9]:  
 разрыв связей структуры; 
 образование повреждений на структурном 

уровне; 
 переход повреждений в микротрещины; 
 образование и рост магистральной трещины. 
В экспериментальных исследованиях, отражен-

ных во многих источниках [10–12], отмеченные эта-
пы объединены в две стадии разрушения материалов. 
Первая стадия состоит в появлении и накоплении 
повреждений или дефектов, при суммировании ко-
торых образуется макротрещина. При второй стадии 
разрушения происходит распространение образо-
вавшейся макротрещины, что может привести к раз-
делению материала на части.  

Исследование напряженно-деформированного со-
стояния изделий указывает на появление усталост-
ных трещин как наиболее вероятное – в опасных зо-
нах с максимальной концентрацией напряжений 
[13, 14]. Для конструкций виброизоляторов зоны 
появления трещин на поверхности резинового мас-
сива приведены на рисунке 2. 

 

 

Рис. 2. Зоны появления трещин на поверхности  
резинового массива 

Fig. 2. Areas where cracks appear on the surface  
of the rubber array 

В реальных условиях изготовления материалов, 
в том числе резины, создаются неоднородные струк-
туры, имеющие различные технологические включе-
ния. При воздействии нагрузки на неоднородный по 
структуре материал напряжения концентрируются 
вблизи имеющегося дефекта. 

Методика экспериментальных исследований 
В процессе эксплуатации систем виброзащиты 

авиационного оборудования на резинометаллические 
виброизоляторы оказывают воздействие следующие 
факторы: 

 постоянная статическая нагрузка от веса обору-
дования; 

 динамическая нагрузка, вызванная колебанием 
амортизированного оборудования от вибрации 
и ударов; 

 тепловое влияние окружающей среды. 
Статические нагрузки вызывают, главным обра-

зом, ползучесть и статическую усталость, а действие 
вибрационных и ударных нагрузок является причи-
ной возникновения циклической усталости, что при-
водит в конечном итоге к потере работоспособности 
конструкции. 

Отмеченные выше три фактора позволяют соста-
вить модель эксплуатации,  основными элементами 
которой являются динамическое и температурное 
воздействия. В реальных условиях эксплуатации со-
четание комбинаций амплитуд динамических и тем-
пературных нагрузок носит случайный характер, то 
есть при моделировании все комбинации режимов 
можно считать равновероятными [15]. Это допуще-
ние позволяет построить амплитудно-температур-
ную модель эксплуатации виброизолятора, которая 
предусматривает шесть режимов динамического на-
гружения при соответствующих амплитудно-
частотных и температурных воздействиях (табл. 2). 

 
Таблица 2. Режимы модели эксплуатации  
виброизоляторов 

Table 2. Modes of operation models of vibration isolators 

№  
режима 

Амплитуда  
F, мм 

Частота циклов  
нагружения f, Гц 

Температура  
Т, С 

1 1,5 9,5 29 
2 1,5 9,5 22 
3 1,0 9,5 24 
4 0,75 9,5 63 
5 0,25 8,5 68 
6 – – 70 

 
Исходя из опыта эксплуатации систем виброза-

щиты бортового авиационного оборудования, а так-
же проведенных экспериментальных исследований 
можно отметить предельные состояния при следую-
щих критериях. При изменении деформации ползу-
чести (высоты виброизолятора) на 10 % от толщины 
резинового массива установлен первый критерий 
предельного состояния. Вторым предельным крите-
рием определено изменение жесткости на 50 % от 
номинального значения. Третьим критерием являет-
ся потеря прочности конструкции до 30 % от началь-
ной (для статической нагрузки). Согласно получен-
ным критериям предельных состояний конструкции 
методика проведения экспериментальных исследо-
ваний виброизолятора включает испытания, которые 
проводятся по каждому критерию отдельно: 

 изменение деформации ползучести; 
 определение жесткостных характеристик; 
 уменьшение прочности (с сохранением сплош-

ности конструкции). 

Описание экспериментов и их результаты  
Приведены: экспериментальное оборудование, 

порядок, содержание и результаты эксперименталь-
ных работ по определению основных ресурсных по- 
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казателей резинометаллического виброизолятора 
согласно установленным критериям предельных со-
стояний конструкции [16]. 

Экспериментальная установка для исследования 
работоспособности виброизоляторов предназначена 
для возбуждения вибрационно-динамических нагру-
зок на испытуемые изделия. Кинематическая схема 
такой экспериментальной установки показана на ри-
сунке 3.  

Установленные на столе шесть образцов виброи-
золяторов испытывают ударно-вибрационное нагру-
жение случайного характера, имитирующее динами-
ческое воздействие. 

 

 

Рис. 3. Кинематическая схема экспериментальной установ-
ки для исследования работоспособности виброизоляторов: 
1 – стол; 2 – приемные колеса; 3 – кулачковые колеса; 4 – цепная 
передача; 5, 6 – зубчатая передача; 7 – электродвигатель; 8 – упру-
гая платформа 

Fig. 3. Kinematic diagram of the experimental setup for study-
ing the performance of vibration isolators: 1 - table; 2 - receiving 
wheels; 3 - cam wheels; 4 - chain transmission; 5, 6 – gear transmis-
sion;  7 – electric motor; 8 – elastic platform 

В результате получено число циклов нагружения 
образцов до момента их разрушения (табл. 3).  

 
Таблица 3. Ресурсные испытания шести образцов  
виброизоляторов 

Table 3. Resource tests of six samples of vibration isolators 

№ образца 1, 2 3, 4 5, 6 
Амплитуда  
деформирования, мм 2,0 3,5 5,0 

 
В процессе испытаний контролировались сле-

дующие параметры: 
 номер образца; 
 амплитуда деформации и соответствующее ей 

число циклов нагружения; 
 частота деформирования; 
 температура массива резины; 
 нагрузочная характеристика и высота образца.  

Порядок проведения экспериментов 
1. Проведены испытания на деформацию ползу-

чести. Результаты показали изменение высоты виб-
роизолятора во времени под действием вибрации 

и изменения температуры окружающей среды (рис. 4). 
Происходит увеличение деформации резинометал-
лического виброизолятора, которое характеризуется 
как явление ползучести [17]. 

 

 

Рис. 4. Изменение виброползучести εП  
резиновых виброизоляторов 

Fig. 4. Changing the vibration creep εП  
of rubber vibration isolators 

Полученные кривые показывают увеличение пол-
зучести для более высокой температуры окружаю-
щей среды при одном и том же амплитудном режиме 
нагружения (режимы 1, 2) согласно таблице 2. 

Уменьшение амплитудного параметра приводит 
к более пологой форме  кривых ползучести (режи-
мы 3, 4). В режиме 5 амплитуды динамических на-
грузок малы, ползучесть имеет ограничение, и ее 
величина со временем совпадает с ползучестью 
статического нагружения (режим 6). Следователь-
но, при малых амплитудах динамического воздей-
ствия возможно прогнозирование деформации ре-
зины по результатам исследований ползучести 
в статике.  

При необходимости проведения ускоренных экс-
периментальных испытаний процесс ползучести ин-
тенсифицируют повышением температуры окру-
жающей среды в соответствии с порядком и прави-
лами ускоренного старения резин по ГОСТ 9.024–74 
«Единая система защиты от коррозии и старения. 
Резины. Методы испытаний на стойкость к термиче-
скому старению». Величина ползучести при этом 
фиксируется как изменение линейных размеров ре-
зинового массива, помещенного в термостат.  

2. При изменении жесткости происходит дефор-
мация виброизолятора на определенную величину 
под действием заданной нагрузки. Виброизолятор 
должен обладать определенной жесткостью как ме-
рой сопротивляемости упругого резинового массива 
действию нагрузки. Выход значения жесткости в про-
цессе эксплуатации за пределы допуска определяет 
срок службы виброизоляторов [18].  

1 
2 

3 
4 

6 5 

7 

8 
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Проведенные эксперименты показывают, что 
виброизоляторы с различной конфигурацией резино-
вого массива в силу неодинакового распределения 
напряжений обладают различной жесткостью [19]. 
Следовательно,  определяющим фактором жесткости 
является не только упругость резины, но и форма 
резинового элемента конструкции.  

Результаты исследований резинового элемента 
цилиндрической формы приведены на рисунке 5. 
Они представлены  кривыми изменения статиче-
ской жесткости виброизоляторов при старении 
(воздействии повышенной температуры) в свобод-
ном состоянии (кривая 1) и под действием нагрузки 
(кривая 2). 

 

 

Рис. 5. Графики изменения жесткости виброизоляторов: 1 – в свободном состоянии; 2 – под нагрузкой 

Fig. 5. Graphs of changes in the stiffness of vibration isolators: 1 - in the free state; 2 - under load 

Если виброизолятор находится под нагрузкой, то 
величина жесткости С обратно пропорциональна его 
деформации. Тогда ее изменение можно представить 
как функцию ε / ε0, где ε – деформация после старе-
ния, ε0  – деформация до старения. Таким образом, 
согласно графикам: 

 уменьшение деформации означает увеличение 
жесткости виброизоляторов при их старении;  

 при воздействии температуры происходит уве-
личение жесткости в любом случае: при старении 
под нагрузкой или в свободном состоянии. 

3. На третьем этапе исследований определяются 
статическая, ударная и вибрационная прочности. Для 
имитации ударного воздействия применялся маятни-
ковый копер. 

В ходе эксперимента измерялось максимальное 
усилие (или деформация) в условиях квазистатиче-
ского нагружения, выдерживаемое виброизолятором 
без проявления повреждений резинового массива. 
При этом фиксировалась величина нагрузки, вы-
звавшая образование повреждений материала конст-
рукции, что может использоваться для принятия ре-
шения о пригодности виброизоляторов, поскольку 
в этом случае наступает процесс разрушения. 

При необходимости подтверждения требуемого 
уровня статической прочности нагрузка производит-
ся лишь до заданного значения. Если при этом нет 
проявления новых или развития имеющихся повреж-
дений, то прочность считается не ниже установлен-
ной величины [20]. 

Далее определяется максимальное число ударов, 
выдерживаемое виброизолятором без потери целост-
ности. В заключение на виброизолятор оказывалось 
вибрационное воздействие фиксируемой длительно-
стью, при которой конструкция сохраняет свою ра-
ботоспособность. 

Результаты экспериментальных исследований 
изменения статической прочности Рст виброизолято-
ра под действием нагрузки и температуры окружаю-
щей среды приведены на рисунке 6. 

Для определения прочностных показателей часто 
необходимы кривые усталости материалов изделий. 
На рисунке 7 приведены кривые усталости, получен-
ные для партии резинометаллических виброизолято-
ров, работающих на сдвиг, и изготовленных из двух 
типов резины. Стрелка ограничивает нижнюю гра-
ницу долговечности виброизоляторов, при которой 
у 20 % образцов произошло появление усталостных 
трещин на поверхности резины, что послужило кри-
терием отказа.  

Отрицательное влияние температуры разогрева 
резинового массива на долговечность конструкции 
благодаря увеличению диссипативного разогрева 
показано на рисунке 8. 

На графиках для двух разных марок резины ука-
зана установившаяся температура центральной 
части резинового массива при его утомлении. 
В эксперименте критерием разрушения выбран 
предельный уровень температуры разогрева, рав-
ный 150 С. 
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Рис. 6. Статическая прочность резинового виброизолятора при изменении температуры 

Fig. 6. Static strength of the rubber vibration isolator when  the temperature changes 

 

Рис. 7. Кривые усталости резин: 1 – резина марки 1562; 2 – резина марки 1224 

Fig. 7. Rubber fatigue curves: 1 - rubber grade 1562; 2 - rubber grade 1224 

 

Рис. 8. Зависимость долговечности виброизоляторов от температуры диссипативного разогрева:  
1 – резина марки 1562; 2 – резина марки 1224 

Fig. 8. Dependence of the durability of vibration isolators on the temperature of dissipative heating:  
1 - rubber grade 1562; 2 - rubber grade 1224 
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На кривой 1 точка А определяет ресурс виброизоля-
тора из резины марки 1562, при этом температура дис-
сипативного разогрева в центре приблизительно 56 С, 
величина ресурса составила (29…35)·103 часов при 
относительном сдвиге 0,3. Точка В получена для 
аналогичного виброизолятора, в котором температу-
ра диссипативного разогрева составила около 34 С 
при величине относительного сдвига 0,2. Таким об-
разом, при одинаковых температурах саморазогрева 
и различных уровнях напряженно-деформированно-
го состояния виброизоляторы имеют практически 
одинаковый ресурс. 

Обсуждение результатов экспериментов 
В результате проведенных экспериментальных 

исследований отмечается, что о степени разрушения 
резинометаллических виброизоляторов можно су-
дить по изменению во времени их основных экс-
плуатационных характеристик: деформации ползу-
чести, жесткости, прочности. Наиболее «слабым» 
звеном в конструкции виброизолятора является ар-
мирующая резина. Работоспособность виброизоля-
тора в целом будет зависеть от прочностных харак-
теристик резинового массива. При этом следует учи-
тывать возможность появления усталостных трещин 
на поверхности резины, которые могут достигать 
критических размеров, отслоение армирующей рези-
ны в местах вулканизации к металлическому фланцу 
и недопустимый диссипативный разогрев резины 
определенной марки – как дополнительный фактор, 
ускоряющий процесс разрушения. 

Выводы 
Проведенные комплексные экспериментальные 

исследования позволяют сделать заключение о дос-
тижении поставленной цели и сформулировать сле-
дующие выводы. 

1. На основе проведенных экспериментов разра-
ботана методика проведения экспериментальных 
исследований резинометаллических виброизолято-
ров по оценке показателей их работоспособности, 
включающая работы по определению деформации 
ползучести резины, жесткости конструкции, прочно-
стных характеристик. 

2. Полученные результаты позволяют обоснован-
но определить критерии отказа и предельные состоя-
ния резинометаллических виброизоляторов по де-
формации ползучести, жесткости, прочности (обра-
зование повреждений, потеря целостности, отказ 
работоспособности). В эксплуатационных условиях 
отмеченные предельные состояния возможны  при 
следующих критериях:  

 изменение жесткости до 50 % от номинального 
значения. При возрастании жесткости на 50 % виб-
роизоляция ухудшается на 3,5 дБ, а при ее уменьше-
нии свыше 50 % происходит недопустимое снижение 
прочности конструкции; 

 уменьшение статической прочности до 30 % от 
начальной при сохранении виброизолятором сплош-
ности при двух ударах на величину свободного хода; 

 деформация ползучести до 10 % от толщины ре-
зинового массива в направлении действия веса амор-

тизируемого оборудования, что соответствует умень-
шению высоты виброизоляторов на 1…3 мм с момен-
та начала эксплуатации. 

3. Предлагаемая методика экспериментальных ис-
следований может быть рекомендована для обосно-
ванного определения ресурса находящихся в эксплуа-
тации резинометаллических виброизоляторов систем 
виброзащиты авиационного оборудования в условиях 
циклической нагрузки, а также прогнозирования сро-
ков продления их ресурсных показателей. 
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The main purpose of vibration-insulating structures is to absorb source disturbances to a damped object or from an object to 
the base of a technical system. Hence, the task of damped object vibration protection and vibration insulation of a disturbance 
source appears. The most important part of a vibration isolator is its elastic element, made of an elastic material. The design of 
vibration isolators should provide their application in both reference and suspension loading diagrams. The design of technical 
systems in special cases does not provide for the vibration isolator replacement for an extremely long time. Application of rubber-
metal vibration isolators in vibration protection systems for mechanisms and equipment working under increased continuous vibra-
tion loads requires an assessment of life-time rate so as to determine the possibility of their further operation. In this regard, 
a method for conducting experimental studies being the basis for research rubber-metal vibration isolator with nonlinear load cha-
racteristics, was developed in the present paper. The amplitude-temperature model of a vibration isolator operation was deter-
mined, six of dynamic loading modes of a structure at various amplitude-frequency and temperature loads were studied. Moreover, 
stress-strain state of a structure rubber array was studied. As a result of the work carried out, three limiting states defining the 
product operability – strength, rigidity, creep deformation along with their criteria were established. Rubber-metal vibration isola-
tor failure level is assessed with regard to the principal operation characteristics listed above. Vibration isolator performance as 
a whole depends on the strength characteristics of a rubber array being the most vulnerable structural element. When designing 
rubber-metal vibration isolators, one should strive for a uniform stress distribution in a rubber array avoiding their concentrations. 
The application of the developed experimental research methodology makes it possible to determine the life time and predict the 
service life of vibration isolators in vibration and shock protection systems for various equipment. 

 
Keywords: vibration protection system, failure criteria, limit state, rubber-metal vibration isolator. 
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