Improving the Design of the Gas-Mechanical Wave Generator Distributor

Karakulov M.N., Starshev D.V., Korobeynikova E.S.

Abstract


In modern industry, the issue of improving the reliability of a particular mechanism is relevant, especially when the work takes place in an aggressive environment. Oil and gas companies are interested than anyone else in solving these problems. This article will give an example of solving one of the problems of modern industry, this is the improvement of the design of the distributor of the gas mechanical waveguide. Such devices are used to generate a deformation wave of flexible elements of gas-hydraulic engines and control the operation of these devices. The use of gas-hydraulic engines with gas-mechanical wave generators is due to their ability to work using the potential energy of the substance transported through the gas pipeline, which allows them to be used in remote regions with a low level of infrastructure development, for example, in the Far North. A little-studied issue is the determination of the moment of distribution mechanism straining and simplification of its design. Variants of the design of the distributor of the gas-mechanical wave generator of the prototype plunger gas-hydraulic engine are considered. The positive and negative aspects of using additional reversing mechanisms in the distributor drive are given. A considered improvements of distributor spool geometry modification are realized by addition of grooves, so that the device is triggered using the pressure of the transported medium. The calculations showed the ways of grooves positioning and determination of their angle displacement to ensure operation. A relation has been obtained that makes it possible to determine the magnitude of the torque that occurs on the shaft of the distributor spool. It has been established that the displacement angle of the spool slots has a significant effect on the magnitude of the torque.

Keywords


gas-mechanical wave generator; mechanism; spool; design; distributor

Full Text

Текст статьи

Galleys

PDF (Русский)
References References

Кареев В. Н. Пневмомеханический генератор волновой передачи. Волновые передачи. М.: СТАНКИН, 1970. 240 с.

Кареев В. Н., Крахин О. И. Плунжерный пневмомеханический генератор волновых передач. Волновые передачи. М.: СТАНКИН, 1975. 256 с.

Gravagno F., Mucino V. and Pennestri E. The Mechanical Efficiency of Harmonic Drives: A Simplified Model. J. of Mechanical Design, 2020, pp. 1-17. doi: 10.1115/1.4048412

Hu Q., Liu Z., Cai L., Yang C., Zhang T. and Wang G. Research on Prediction Method of Transmission Accuracy of Harmonic Drive.International Power Transmission and Gearing Conference, 2019, vol. 10, pp. 54-58. doi: 10.1115/DETC2019-97214

Koktavy S., Yudell, A. and Van de Ven J.Design of a Crank-Slider Spool Valve for Switch-Mode Circuits With Experimental Validation. J. of Dynamic Systems, Measurement and Control, 2017, no. 140, pp. 141-146. doi: 10.1115/1.4038537

Maiti R. and Roy A. A Wave Generator of New Concept for Flex Gear of Harmonic Drive With Pure Involute Tooth Gear Pairs.8th International Power Transmission and Gearing Conference, 2017, vol. 6, pp. 70-78. DOI: 0.1115/DETC2000/PTG-14458.

Schmidt L., Liedhegener M., Bech M. and Andersen T. Dynamic Analysis and Characterization of Conventional Hydraulic Power Supply Units. BATH/ASME 2016 Symposium on Fluid Power and Motion Control, 2016, pp. 75-79. doi: 10.1115/FPMC2016-1756

Xie F., Zhang J., Han Y., Wu C., Zhao Z. and Zhan M. Three-Dimensional Spatial Meshing Quality Pre-Control of Harmonic Drive Based on Double-Circular-Arc Tooth Profile.International Power Transmission and Gearing Conference, 2019, vol. 10, pp. 194-198. doi: 10.1115/DETC2019-97228

Yu S., Zhifei G., Gaotong L. and Qiang L. Design of measurement and control system for the efficiency test of spacecraft harmonic drive mechanism. 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2017, pp. 110-115. doi: 10.1109/ICMAE.2017.8038735

Pennestrì E. and Valentini P. Kinematics and Enumeration of Combined Harmonic Drive Gearing. J. of Mechanical Design, 2016, no. 137, pp. 111-116. doi: 10.1115/1.4031590

Boyce-Erickson G., Fulbright N., Voth J., Chase T., Li P. and Van de Ven J. Mechanical and Hydraulic Actuation Strategies for Mainstage Spool Valves in Hydraulic Motors. ASME/BATH 2019 Symposium on Fluid Power and Motion Control, 2019, pp. 106-110. doi: 10.1177/09596518JSCE1037

Васин С. А., Плахотникова Е. В. Методика расчета величины крутящего момента настройки электропривода в системе электроприводной запорной арматуры с прямолинейным перемещением запорного органа // Записки Горного института. 2018. № 232. C. 407.

Cиловой анализ двухпоточных гидромеханических передач / В. М. Шарипов, Ю. С. Щетинин, С. В. Гаев, О. В. Трошкин // Тракторы и сельхозмашины. 2017. № 2. С. 35-41.

Гудков В. В., Дементьев М. Р. Сравнительные характеристики волновых зубчатых и фрикционных передач // Евразийское научное объединение. 2017. Т. 1, № 10 (32). С. 36-39.

Ан И. К., Беляев Д. В. Силовые характеристики в волновой передаче с промежуточными телами // Главный механик. 2017. № 12. С. 40-42.

Кинематика и особенности расчета волновой зубчатой передачи / Г. А. Тимофеев, О. В. Егорова, М. В. Самойлова, И. И. Григорьев // Современное машиностроение. Наука и образование. 2016. № 5. С. 250-263. doi: 10.1872/MMF-2016-25

Капитонов А. В., Сасковец К. В., Касьянов А. И. Планетарная радиально-плунжерная передача с улучшенными эксплуатационными характеристиками // Вестник Белорусско-Российского университета. 2017. № 3 (56). С. 27-34. DOI: 10.53078/ 20778481-2017-3-27.

Капитонов А. В., Сасковец К. В., Касьянов А. И. Компьютерное 3d-моделирование конструкций и кинематических параметров планетарных малогабаритных передач // Вестник Полоцкого государственного университета. Серия В. Промышленность. Прикладные науки. 2016. № 11. С. 34-40.

Сасковец К. В., Капитонов А. В., Лебедев М. В. Новые конструкции и методы оценки точности планетарных радиально-плунжерных передач // Вестник Гомельского государственного технического университета им. П. О. Сухого. 2019. № 1 (76). С. 3-9.

Башта Т. М. Гидропривод и гидропневмоавтоматика. М.: Машиностроение, 1972. 320 с.




DOI: http://dx.doi.org/10.22213/2413-1172-2022-1-38-43

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2022 Vestnik IzhGTU imeni M.T. Kalashnikova

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


ISSN 1813-7903 (Print)
ISSN 2413-1172 (Online)