Simulation Model of One-Parameter Selective Assembly of Two Elements With Multivariate Set-Making
DOI:
https://doi.org/10.22213/2410-9304-2024-3-92-96Keywords:
multivariate set-making, simulation model, selective assemblyAbstract
Analytical and simulation methods are used to model assembly processes and technological systems in order to determine and optimize their performance and functioning parameters. The first one, describes an object or process using mathematical relationships indirectly. Simulation modelling is one of the modern methods of production system experimental research, allowing to take the presence of various components in the system, nonlinear characteristics, non-determinism and dynamism of ongoing processes into account. This work is devoted to the simulation model development of the technological process of multivariate one-parameter selective assembly of two elements. Multivariate set-making is defined by generalized rules with a set of weights which elements are set the distribution of elements between sets of different types. Selectively assembled elements have parameters determined by the manufacturing stage, which are independent random variables with known probabilistic characteristics. It is assumed that the input-output relationship is linear with given coefficients, the set-making equations linking the numbers of selective groups and assembly sets are known. A simulation model of the assembly process was built in the GPSS World, which, in contrast to the known one, operates with multivariate set-making rules for the case of assembly of two elements. The model allows to determine the quantitative indicators of the assembly process, in particular, the probabilities of assembly set formation, work-in-progress and preliminary rejects. As an example, the process of multivariate set-making of two parts forming a precision engineering product is considered. The data of parts distributions of both types by selective groups before assembly are given, the technological process indicators are calculated. Based on the modelling results the advantages and disadvantages of the multivariate set-making process are outlined.References
Филипович О. В. Влияние погрешностей измерения на показатели однопараметрической многовариантной селективной сборки двух элементов // Современные технологии сборки: Материалы VIII Международного научно-технического семинара, Москва, 19-20 октября 2023 года. М.: Московский Политех, 2023. С. 149-154.
Филипович О. В. Имитационная модель селективной сборки трех элементов с сортировкой по оцениваемым значениям // Сборка в машиностроении, приборостроении, 2022. № 1. С. 14-17.
Filipovich O.V.,BalakinA.I., BalakinaN.A. etc.Simulation model of selective assembly of the conrod-piston group unit of internal combustion engines, taking into account measurement errors during sorting // Journal of Physics: Conference Series, 2021:012188.DOI10.1088/1742-6596/2096/1/012188.
Filipovich O. Simulation model of selective assembly of three elements //2020 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2020, 2020:9271388. DOI 10.1109/FarEastCon50210. 2020.9271388.
Devyatkov V., Gabalin V. Simulation Research of Business Processes with Queues Using GPSS Studio Modeling Environment //OpenEducation,2020.24. PP. 67-77. DOI 10.21686/1818-4243-2020-3-67-77.
Lapteva E., Lekareva Yu., Umansky S. Imitation Modeling of Production Processes in FlexSim Environment // Vestnik of the Plekhanov Russian University of Economics,2023. 20. Pp. 16-23. DOI 10.21686/2413-2829-2023-2-16-23.
Smith J. S., Sturrock D. T. Simio and Simulation - Modeling, Analysis, Applications. 6th Edition. Createspace Independent Publishing Platform, 2023. 436p.
Xue D., Pan F.MATLAB and Simulink in Action. Springer Singapore, 2024. 468p.DOI10.1007/978-981-99-1176-9.
Хроль Е., Уварова А., Кужильный А. Разработка имитационных моделей с помощью AnyLogic // Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies, 2023. № 3. Pp. 0119-0130. DOI 10.47813/2782-2818-2023-3-4-0119-0130.
Боев В. Д. Концептуальное проектирование систем в AnyLogic и GPSS World. М.: ИНТУИТ; Ай Пи Ар Медиа, 2021. 542 c.
Law A. M. Simulation modeling and analysis. Sixth Edition. McGraw-Hill, 2024. 688 p.
Мышкис А. Д. Элементы теории математических моделей. М.: Ленанд, 2019. 304 с.
Mourtzis D. Simulation in the design and operation of manufacturing systems: state of the art and new trends // International Journal of Production Research, 2019. 58. PP. 1-23. DOI 10.1080/00207543.2019.1636321.
Alquraish M. Modeling and Simulation of Manufacturing Processes and Systems: Overview of Tools, Challenges, and Future Opportunities //Engineering, Technology & Applied Science Research, 2022. DOI 12. 9779-9786. 10.48084/ etasr.5376.
Советов Б. Я., Яковлев С. А. Моделирование систем. М.: Юрайт, 2021. 343с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Олег Викторович Филипович

This work is licensed under a Creative Commons Attribution 4.0 International License.