Определение технического состояния и прогнозирование остаточного ресурса электропривода в предсказательном обслуживании: обзор зарубежных источников

Авторы

  • П. А. Санников ИжГТУ имени М. Т. Калашникова
  • П. В. Лекомцев ИжГТУ имени М. Т. Калашникова

DOI:

https://doi.org/10.22213/2410-9304-2025-1-82-93

Ключевые слова:

методы классификации и регрессии, глубокое обучение, электропривод, диагностика, определение технического состояния, предсказательное обслуживание

Аннотация

Предсказательное обслуживание электропривода в составе технологического оборудования позволяет снизить вероятность внепланового простоя производства и минимизировать затраты на его ремонт путем непрерывного мониторинга состояния и прогнозирования остаточного ресурса электропривода. В статье на основе анализа зарубежных источников и стандартов ИСО представлены аспекты систем предсказательного обслуживания электропривода: рассмотрены этапы их построения и методы, применяющиеся на каждом этапе. Сделан акцент на наиболее трудоемкие и сочетающие в себе различные методы этапы - диагностику состояния электропривода и прогнозирование его остаточного ресурса. Выделены методы определения технического состояния электропривода, рассмотрены их преимущества и недостатки, а также типы неисправностей, которые возможно диагностировать с помощью каждого из методов. Показано, что наибольшую эффективность и широкое применение демонстрируют методы, основанные на анализе вибрационных и электрических сигналов. Они позволяют выявлять широкий спектр неисправностей и применимы для оценки технического состояния практически всех типов электродвигателей. Проведен сравнительный анализ методов машинного обучения, применяемых для прогнозирования неисправностей и остаточного ресурса электропривода. Отмечены такие методы машинного обучения, как метод случайного леса, нейронные сети долгой краткосрочной памяти, метод опорных векторов, метод k-ближайших соседей. Анализ показал, что выбор алгоритма зависит от множества факторов и не может основываться на универсальных подходах.

Биографии авторов

П. А. Санников, ИжГТУ имени М. Т. Калашникова

аспирант

П. В. Лекомцев, ИжГТУ имени М. Т. Калашникова

кандидат технических наук, доцент

Библиографические ссылки

Singh S., Gill R., Kumar R. et al. A Comparative Analysis of Machine Learning Algorithms for Predictive Maintenance in Electrical Systems // 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM). 2024. Pp. 1-6.DOI: 10.1109/ICIPTM59628.2024.10563826.

Limprasert N., Thimtheang T., Wattanakul K. et al. Predictive Maintenance Using Machine Learning // 2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C). 2023. pp. 235-240. DOI: 10.1109/RI2C60382.2023.10356007.

Bundasak S., Wittayasirikul P. Predictive maintenance using AI for Motor health prediction system // 2022 International Electrical Engineering Congress (iEECON). 2022. Pp. 1-4. DOI: 10.1109/iEECON53204.2022.9741620.

Floresca F., Kyle Tobias C., Ostia C. Naïve Bayes Classification Technique for Brushless DC Motor Fault Diagnosis with Discrete Wavelet Transform Feature Extraction // 2022 14th International Conference on Computer and Automation Engineering (ICCAE). 2022. Pp. 140-144. DOI: 10.1109/ICCAE 55086.2022.9762447.

Zainol A. Burhani N. Detecting Most Influential Parameters in High Voltage Induction Motor Failure using Logistic Regression Analysis // 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). 2022. Pp. 82-86. DOI: 10.1109/ISMODE56940.2022.10180980.

Silva R., Giesbrecht M. Detection of Broken Rotor Bars in Induction Motors through the k-NN Algorithm Combined with a Deterministic-Stochastic Subspace Method for System Identification // IECON 2021 - 47th Annual Conference of the IEEE Industrial Electronics Society. 2021. Pp. 1-6. DOI: 10.1109/IECON48115.2021.9589128.

Kammoun J., Lajnef H., Ghariani M., Hamed B., Fakhfakh M. Diagnostic of Induction Motor Eccentricity Defaults in Electrical Vehicles using SVM // 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). 2024. Pp. 01-05. DOI: 10.1109/IRASET60544. 2024.10549645.

Amihai I., Gitzel R., Kotriwala A. et al. An industrial case study using vibration data and machine learning to predict asset health. // 2018 IEEE 20th Conference on Business Informatics (CBI). 2018. Vol. 1, pp. 178-185.

Yaqub R., Ali H., Bin M. Electrical Motor Fault Detection System using AI's Random Forest Classifier Technique // 2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET). 2023. Pp. 1-5. DOI: 10.1109/IC_ASET58101.2023.10150924.

Kandukuri S., Van Khang H., Robbsersmyr K. Multi-Component Fault Detection in Wind Turbine Pitch Systems Using Extended Park's Vector and Deep Autoencoder Feature Learning // 2018 21st International Conference on Electrical Machines and Systems (ICEMS). 2018. Pp. 1002-1007. DOI: 10.23919/ ICEMS.2018.8549293.

Jiang G., He H., Xie P. Tang Y., Stacked Multilevel-DenoisingAutoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis // IEEE Transactions on Instrumentation and Measurement. 2017. Vol. 66 (9). Pp. 2391-2402. DOI: 10.1109/TIM.2017.2698738.

Han J., Choi D., Park S., Hong S. Diagnosis of motor aging through CNN model using signal correlation // 2020 20th International Conference on Control, Automation and Systems (ICCAS). 2020. Pp. 571-575. DOI: 10.23919/ICCAS50221.2020.9268420.

Husari F., Seshadrinath J. Sensitive Inter-Tum Fault Identifcation in Induction Motors Using Deep Learning Based Methods // 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). 2020. Pp. 1-6. DOI: 10.1109/PESGRE45664.2020.9070334.

Samanta S., Bera J., Biswas A. Induction Motor Inter-turn Short Circuit Fault Classification by Extracting Auto Features Using LSTM Neural Network // 2024 IEEE 3rd International Conference on Control, Instrumentation, Energy & Communication (CIEC). 2024. Pp. 180-185.DOI: 10.1109/CIEC59440.2024.10468522.

Khaniki M., Mirzaeibonehkhater M., Manthouri M. Enhancing Fault Detection in Induction Motors using LSTM-Attention Neural Networks // 2023 9th International Conference on Control, Instrumentation and Automation (ICCIA). 2023. Pp. 1-5.DOI: 10.1109/ICCIA61416.2023.10506369.

Sameh M., Tarek A.Yassine K. Bearing and Rotor Faults detection and diagnosis of Induction Motors using Statistical Neural Networks // 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). 2020. Pp. 77-81. DOI: 10.1109/STA50679.2020.9329334.

Su Y., Gao L., Lu Y. et al.Intelligent Diagnosis Research of Motor Drive Systems Based on Neural Networks // 2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS). 2024. Pp. 1101-1105. DOI: 10.1109/ICEEPS62542.2024.10693252.

Briza A., Piedad E., Peramo E. Simpler Machine Learning Methods Outperform Deep Learning in Motor Fault Detection // 2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). 2024. Pp. 675-680. DOI: 10.1109/ ICAIIC60209.2024.10463445.

Liu L., Guo Y., Lei G., Zhu J. Review of Data-Driven Artificial Intelligence Applications in Electric Machines and Drive Systems // 2023 IEEE International Future Energy Electronics Conference (IFEEC). 2023. Pp. 93-97. DOI: 10.1109/IFEEC58486.2023.10458448.

Zhang Y., Guo R. Fault Diagnosis for Rolling Bearings Based on the Quadrature Particle Filter // 2020 Chinese Control And Decision Conference (CCDC). 2020. Pp. 2148-2155.DOI: 10.1109/CCDC49329.2020.9164797.

Moon C., Han J., Kwon Y. Square-root unscented Kalman filter for state estimation of permanent magnet synchronous motor // 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). 2016. Pp. 460-464. DOI: 10.1109/SICE.2016.7749203.

Behzad M., Arghan H., Bastami A., Zuo M.Prognostics of rolling element bearings with the combination of paris law and reliability method // 2017 Prognostics and System Health Management Conference (PHM-Harbin). 2017. pp. 1-6.DOI: 10.1109/PHM.2017. 8079187.

Huang W., Huang Y., Luo L., Zhou L. A Mixed Logical Dynamic Model-Based Open-Circuit Fault Diagnosis Method for Five-Phase PMSM Drives // 2023 26th International Conference on Electrical Machines and Systems (ICEMS). 2023, pp. 3641-3646.DOI: 10.1109/ICEMS59686.2023.10344412.

Atamuradov V., Medjaher K., DersinP. et al. Prognostics and Health Management for Maintenance Practitioners-Review, Implementation and Tools Evaluation // International Journal of Prognostics and Health Management. 2018. Vol. 8. DOI: 10.36001/ijphm. 2017.v8i3.2667.

Shifat T., Jang-Wook H. Remaining Useful Life Estimation of BLDC Motor Considering Voltage Degradation and Attention-Based Neural Network // IEEE Access. 2020. Vol. 8. Pp. 168414-168428. DOI: 10.1109/ACCESS.2020.3023335.

Maciejewski N., Treml A. Flauzino R. A Systematic Review of Fault Detection and Diagnosis Methods for Induction Motors // 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE). 2020. Pp. 86-90. DOI: 10.1109/FORTEI-ICEE50915.2020.9249890.

Drif M., Cardoso A. Stator Fault Diagnostics in Squirrel Cage Three-Phase Induction Motor Drives Using the Instantaneous Active and Reactive Power Signature Analyses // IEEE Transactions on Industrial Informatics. 2014. Vol. 10 (2). Pp. 1348-1360, DOI: 10.1109/TII.2014.2307013.

Bianchini C., Torreggiani A., DavoliM. et al. Stator fault diagnosis by reactive power in dual three-phase reluctance motors // 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED). 2019. Pp. 251-256. DOI: 10.1109/DEMPED.2019.8864909.

Furse C., Kafal M., Razzaghi R., Shin Y. Fault Diagnosis for Electrical Systems and Power Networks: A Review //IEEE Sensors Journal. 2021.Vol. 21 (2). Pp. 888-906. DOI: 10.1109/JSEN.2020.2987321.

Niu G., Dong X., Chen Y. Motor Fault Diagnostics Based on Current Signatures: A Review // IEEE Transactions on Instrumentation and Measurement. 2023.Vol. 72. Pp. 1-19. DOI: 10.1109/TIM.2023.3285999.

Guefack F., Kiselev A., Kuznietsov A. Improved Detection of Inter-turn Short Circuit Faults in PMSM Drives using Principal Component Analysis // 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 2018. pp. 154-159.DOI: 10.1109/SPEEDAM.2018.8445403.

Silva J., Cardoso A. Bearing failures diagnosis in three-phase induction motors by extended Park's vector approach // 31st Annual Conference of IEEE Industrial Electronics Society. 2005. DOI: 10.1109/IECON.2005.1569315.

Messaoudi M., Flah A., Alotaibi A. et al. Diagnosis and fault detection of rotor bars in squirrelcage induction motors using combined park's vector and extended park's vector approaches // Electronics. 2022. Vol. 11 (3). DOI: 10.3390/electronics11030380.

Asad B., Vaimann T., Belahcen A., Kallaste A. Broken Rotor Bar Fault Diagnostic of Inverter Fed Induction Motor Using FFT, Hilbert and Park's Vector Approach // 2018 XIII International Conference on Electrical Machines (ICEM). 2018. Pp. 2352-2358. DOI: 10.1109/ICELMACH.2018.8506957.

Kandukuri S., Huynh V., Robbersmyr K. Diagnostics of stator winding failures in wind turbine pitch motors using Vold-Kalman filter // IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 2019. Pp. 5992-5997. DOI: 10.1109/IECON.2019.8926983.

Pires V., Foito D., Martins J., Pires A. Detection of stator winding fault in induction motors using a motor square current signature analysis (MSCSA) // 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG). 2015. Pp. 507-512.DOI: 10.1109/PowerEng.2015.7266369.

Becker V., Schwamm T., Urschel S., Antonino-Daviu J. Fault Detection of Circulation Pumps on the Basis of Motor Current Evaluation // IEEE Transactions on Industry Applications. 2021.Vol. 57 (5). Pp. 4617-4624. DOI: 10.1109/TIA.2021.3085697.

Yeolekar S., Mulay G., Helonde J. Outer race bearing fault identification of induction motor based on stator current signature by wavelet transform // 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). 2017. pp. 2011-2015.DOI: 10.1109/RTEICT.2017.8256951.

IshkovaI., Vítek O. Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis // 2015 16th International Scientific Conference on Electric Power Engineering (EPE). 2015. p. 682-686. DOI: 10.1109/EPE.2015.7161130.

Rafaq M., Faizan Shaikh M., Park Y., Lee S. Reliable Airgap Search Coil Based Detection of Induction Motor Rotor Faults Under False Negative Motor Current Signature Analysis Indications // IEEE Transactions on Industrial Informatics. 2022. Vol. 18 (5). Pp. 3276-3285. DOI: 10.1109/TII.2020.3042195.

Pires V., Martins F., Pires A., Rodrigues L. Induction motor broken bar fault detection based on MCSA, MSCSA and PCA: A comparative study // IEEE 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). 2016. Pp. 298-303. DOI:10.1109/CPE.2016.7544203.

Dehina W., Boumehraz M., Kratz F., Fantini J. Diagnosis and Comparison between Stator Current Analysis and Vibration Analysis of Static Eccentricity Faults in The Induction Motor. // 4th International Conference on Power Electronics and their Applications (ICPEA). 2019. pp. 1-4, DOI: 10.1109/ICPEA1.2019.8911193.

Bhaumik D., Sadda A., Punekar G. Vibration Signal Analysis of Induction Motor Bearing Faults: Some Aspects // 2023 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES). 2023. Pp. 1-4. DOI: 10.1109/ICSSES58299.2023.10200270.

Noureddine B., Remus P., Raphael R., Salim S. Rolling Bearing Failure Detection in Induction Motors using Stator Current, Vibration and Stray Flux Analysis Techniques // IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. 2020. Pp. 1088-1095. DOI: 10.1109/IECON43393.2020.9254401.

Aniket M., Babasaheb P. A Review: Condition Based Techniques and Predictive Maintenance for Motor. // 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS).2021. Pp. 807-813. DOI:10.1109/ICAIS50930.2021.9395903.

Bhandari M., Silwal B. Development of Machine Learning Model Applied to Industrial Motors for Predictive Maintenance // 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). 2022. Pp. 1632-1635. DOI: 10.1109/IIHC55949.2022.10060358.

Panov S., Nikolov A., Panova S. Review of standarts and systems for predictive maintenance // Science, Engineering and Education. 2021. Vol. 6 (1). DOI: 10.59957/see.v6.i1.2020.1

Kumar S., Mukherjee D., Kumar. P. etal. A Comprehensive Review of Condition Based Prognostic Maintenance (CBPM) for Induction Motor // IEEE Access. 2019. Vol. 7, pp. 90690-90704. DOI: 10.1109/ACCESS.2019.2926527.

ГОСТ РИСО 13372-2013 Контроль состояния и диагностика машин. Термины и определения: Национальный стандарт Российской Федерации: дата введения 2013-11-22 / Федеральное агентство по техническому регулированию. Изд. официальное. М.: Стандартинформ, 2019. 20 с.

Atamuradov V., Camci F. Segmentation based feature evaluation and fusion for prognostics feature selection based on segment evaluation // The International Journal of Prognostics and Health Management. 2017. Vol. 8(2). Pp. 1-14. DOI: 10.36001/ijphm.2017.v8i2.2643.

Atamuradov V., Medjaher K., Camci F. et al. Machine Health Indicator Construction Framework for Failure Diagnostics and Prognostics // Journal of Signal Processing Systems. 2020. Vol. 92 (8). DOI: 10.1007/s11265-019-01491-4.

Cernuda C. On the relevance of preprocessing in predictive maintenance for dynamic systems // Predictive Maintenance in Dynamic Systems. 2019. pp. 53-93. DOI: 10.1007/978-3-030-05645-2_3.

Haneen Arafat Abu Alfeilat, Ahmad B.A. Hassanat, Omar Lasassmehet al. Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review // Big Data. 2019.Vol. 7(4). Pp. 221-248. DOI: 10.1089/big.2018.0175.

Romanssini M., de Aguirre P., Severo L., Girardi A. A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery // Eng - Advances in Engineering. 2023.Vol. 4(3). pp.1797-1817. DOI: 10.3390/eng4030102.

ГОСТ Р ИСО 13380-2002 Диагностирование машин по рабочим характеристикам. Общие положения: Межгосударственный стандарт: дата введения 2005-08-11 / Федеральное агентство по техническому регулированию. - Изд. официальное. М.:Стандартинформ, 205. 23 с.

ГОСТ Р ИСО 13374-1-2011. Контроль состояния и диагностика машин. Обработка, передача и представление данных: Национальный стандарт Российской Федерации: дата введения 2012-12-01 / Федеральное агентство по техническому регулированию. Изд. официальное. М.:Стандартинформ, 2018. 20 с.

FossierS.Robic P. Maintenance of complex systems - From preventive to predictive // 2017 12th International Conference on Live Maintenance (ICOLIM). 2017. pp. 1-6. DOI: 10.1109/ICOLIM.2017.7964123.

Gu C., He Y., Han X, Chen Z. Product quality oriented predictive maintenance strategy for manufacturing systems // 2017 Prognostics and System Health Management Conference (PHM-Harbin). 2017. pp. 1-7.DOI: 10.1109/PHM.2017.8079213.

Загрузки

Опубликован

01.04.2025

Как цитировать

Санников, П. А., & Лекомцев, П. В. (2025). Определение технического состояния и прогнозирование остаточного ресурса электропривода в предсказательном обслуживании: обзор зарубежных источников. Интеллектуальные системы в производстве, 23(1), 82–93. https://doi.org/10.22213/2410-9304-2025-1-82-93

Выпуск

Раздел

Статьи