Conditional monitoring and remaining useful life prediction of electric motor in predictive maintenance: review

Authors

  • P. A. Sannikov Kalashnikov Izhevsk State Technical University
  • P. V. Lekomtsev Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2410-9304-2025-1-82-93

Keywords:

classification and regression methods, deep learning, an electric drive, diagnosis, condition monitoring, predictive maintenance

Abstract

Predictive maintenance of an electric drive as part of technological equipment reduces the probability of unplanned production downtime and minimizes repair costs by continuously monitoring the condition and predicting the remaining useful life of the electric drive. Based on the analysis of foreign sources and ISO standards, the article presents aspects of predictive maintenance systems: the stages of their construction and the methods used at each stage are considered. The emphasis is placed on the most time-consuming and combining various methods of stages - diagnosis of the condition of the electric drive and faults prediction. The methods of determining the technical condition of the electric drive are highlighted, their advantages and disadvantages are considered, as well as the types of faults that can be diagnosed using each of the methods. The most effective and widely used diagnostic methods turned out to be methods based on the analysis of vibration and electrical signals, since they allow detecting a wide range of faults. In addition, they are versatile, as they are suitable for determining the technical condition of almost all types of electric motors. A comparative analysis of machine learning methods used to predict faults and remaining useful life of an electric drive is carried out. Such machine learning methods as the Random Forest method, Long short-term memoryneural networks, the support vector machine method, and the k-nearest neighbor method are noted. The analysis showed that the choice of an algorithm depends on many factors and cannot be based on universal approaches.

Author Biographies

P. A. Sannikov, Kalashnikov Izhevsk State Technical University

Post-graduate

P. V. Lekomtsev, Kalashnikov Izhevsk State Technical University

PhD in Engineering, Professor

References

Singh S., Gill R., Kumar R. et al. A Comparative Analysis of Machine Learning Algorithms for Predictive Maintenance in Electrical Systems // 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM). 2024. Pp. 1-6.DOI: 10.1109/ICIPTM59628.2024.10563826.

Limprasert N., Thimtheang T., Wattanakul K. et al. Predictive Maintenance Using Machine Learning // 2023 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C). 2023. pp. 235-240. DOI: 10.1109/RI2C60382.2023.10356007.

Bundasak S., Wittayasirikul P. Predictive maintenance using AI for Motor health prediction system // 2022 International Electrical Engineering Congress (iEECON). 2022. Pp. 1-4. DOI: 10.1109/iEECON53204.2022.9741620.

Floresca F., Kyle Tobias C., Ostia C. Naïve Bayes Classification Technique for Brushless DC Motor Fault Diagnosis with Discrete Wavelet Transform Feature Extraction // 2022 14th International Conference on Computer and Automation Engineering (ICCAE). 2022. Pp. 140-144. DOI: 10.1109/ICCAE 55086.2022.9762447.

Zainol A. Burhani N. Detecting Most Influential Parameters in High Voltage Induction Motor Failure using Logistic Regression Analysis // 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). 2022. Pp. 82-86. DOI: 10.1109/ISMODE56940.2022.10180980.

Silva R., Giesbrecht M. Detection of Broken Rotor Bars in Induction Motors through the k-NN Algorithm Combined with a Deterministic-Stochastic Subspace Method for System Identification // IECON 2021 - 47th Annual Conference of the IEEE Industrial Electronics Society. 2021. Pp. 1-6. DOI: 10.1109/IECON48115.2021.9589128.

Kammoun J., Lajnef H., Ghariani M., Hamed B., Fakhfakh M. Diagnostic of Induction Motor Eccentricity Defaults in Electrical Vehicles using SVM // 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). 2024. Pp. 01-05. DOI: 10.1109/IRASET60544. 2024.10549645.

Amihai I., Gitzel R., Kotriwala A. et al. An industrial case study using vibration data and machine learning to predict asset health. // 2018 IEEE 20th Conference on Business Informatics (CBI). 2018. Vol. 1, pp. 178-185.

Yaqub R., Ali H., Bin M. Electrical Motor Fault Detection System using AI's Random Forest Classifier Technique // 2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET). 2023. Pp. 1-5. DOI: 10.1109/IC_ASET58101.2023.10150924.

Kandukuri S., Van Khang H., Robbsersmyr K. Multi-Component Fault Detection in Wind Turbine Pitch Systems Using Extended Park's Vector and Deep Autoencoder Feature Learning // 2018 21st International Conference on Electrical Machines and Systems (ICEMS). 2018. Pp. 1002-1007. DOI: 10.23919/ ICEMS.2018.8549293.

Jiang G., He H., Xie P. Tang Y., Stacked Multilevel-DenoisingAutoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis // IEEE Transactions on Instrumentation and Measurement. 2017. Vol. 66 (9). Pp. 2391-2402. DOI: 10.1109/TIM.2017.2698738.

Han J., Choi D., Park S., Hong S. Diagnosis of motor aging through CNN model using signal correlation // 2020 20th International Conference on Control, Automation and Systems (ICCAS). 2020. Pp. 571-575. DOI: 10.23919/ICCAS50221.2020.9268420.

Husari F., Seshadrinath J. Sensitive Inter-Tum Fault Identifcation in Induction Motors Using Deep Learning Based Methods // 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). 2020. Pp. 1-6. DOI: 10.1109/PESGRE45664.2020.9070334.

Samanta S., Bera J., Biswas A. Induction Motor Inter-turn Short Circuit Fault Classification by Extracting Auto Features Using LSTM Neural Network // 2024 IEEE 3rd International Conference on Control, Instrumentation, Energy & Communication (CIEC). 2024. Pp. 180-185.DOI: 10.1109/CIEC59440.2024.10468522.

Khaniki M., Mirzaeibonehkhater M., Manthouri M. Enhancing Fault Detection in Induction Motors using LSTM-Attention Neural Networks // 2023 9th International Conference on Control, Instrumentation and Automation (ICCIA). 2023. Pp. 1-5.DOI: 10.1109/ICCIA61416.2023.10506369.

Sameh M., Tarek A.Yassine K. Bearing and Rotor Faults detection and diagnosis of Induction Motors using Statistical Neural Networks // 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). 2020. Pp. 77-81. DOI: 10.1109/STA50679.2020.9329334.

Su Y., Gao L., Lu Y. et al.Intelligent Diagnosis Research of Motor Drive Systems Based on Neural Networks // 2024 3rd International Conference on Energy and Electrical Power Systems (ICEEPS). 2024. Pp. 1101-1105. DOI: 10.1109/ICEEPS62542.2024.10693252.

Briza A., Piedad E., Peramo E. Simpler Machine Learning Methods Outperform Deep Learning in Motor Fault Detection // 2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). 2024. Pp. 675-680. DOI: 10.1109/ ICAIIC60209.2024.10463445.

Liu L., Guo Y., Lei G., Zhu J. Review of Data-Driven Artificial Intelligence Applications in Electric Machines and Drive Systems // 2023 IEEE International Future Energy Electronics Conference (IFEEC). 2023. Pp. 93-97. DOI: 10.1109/IFEEC58486.2023.10458448.

Zhang Y., Guo R. Fault Diagnosis for Rolling Bearings Based on the Quadrature Particle Filter // 2020 Chinese Control And Decision Conference (CCDC). 2020. Pp. 2148-2155.DOI: 10.1109/CCDC49329.2020.9164797.

Moon C., Han J., Kwon Y. Square-root unscented Kalman filter for state estimation of permanent magnet synchronous motor // 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). 2016. Pp. 460-464. DOI: 10.1109/SICE.2016.7749203.

Behzad M., Arghan H., Bastami A., Zuo M.Prognostics of rolling element bearings with the combination of paris law and reliability method // 2017 Prognostics and System Health Management Conference (PHM-Harbin). 2017. pp. 1-6.DOI: 10.1109/PHM.2017. 8079187.

Huang W., Huang Y., Luo L., Zhou L. A Mixed Logical Dynamic Model-Based Open-Circuit Fault Diagnosis Method for Five-Phase PMSM Drives // 2023 26th International Conference on Electrical Machines and Systems (ICEMS). 2023, pp. 3641-3646.DOI: 10.1109/ICEMS59686.2023.10344412.

Atamuradov V., Medjaher K., DersinP. et al. Prognostics and Health Management for Maintenance Practitioners-Review, Implementation and Tools Evaluation // International Journal of Prognostics and Health Management. 2018. Vol. 8. DOI: 10.36001/ijphm. 2017.v8i3.2667.

Shifat T., Jang-Wook H. Remaining Useful Life Estimation of BLDC Motor Considering Voltage Degradation and Attention-Based Neural Network // IEEE Access. 2020. Vol. 8. Pp. 168414-168428. DOI: 10.1109/ACCESS.2020.3023335.

Maciejewski N., Treml A. Flauzino R. A Systematic Review of Fault Detection and Diagnosis Methods for Induction Motors // 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE). 2020. Pp. 86-90. DOI: 10.1109/FORTEI-ICEE50915.2020.9249890.

Drif M., Cardoso A. Stator Fault Diagnostics in Squirrel Cage Three-Phase Induction Motor Drives Using the Instantaneous Active and Reactive Power Signature Analyses // IEEE Transactions on Industrial Informatics. 2014. Vol. 10 (2). Pp. 1348-1360, DOI: 10.1109/TII.2014.2307013.

Bianchini C., Torreggiani A., DavoliM. et al. Stator fault diagnosis by reactive power in dual three-phase reluctance motors // 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED). 2019. Pp. 251-256. DOI: 10.1109/DEMPED.2019.8864909.

Furse C., Kafal M., Razzaghi R., Shin Y. Fault Diagnosis for Electrical Systems and Power Networks: A Review //IEEE Sensors Journal. 2021.Vol. 21 (2). Pp. 888-906. DOI: 10.1109/JSEN.2020.2987321.

Niu G., Dong X., Chen Y. Motor Fault Diagnostics Based on Current Signatures: A Review // IEEE Transactions on Instrumentation and Measurement. 2023.Vol. 72. Pp. 1-19. DOI: 10.1109/TIM.2023.3285999.

Guefack F., Kiselev A., Kuznietsov A. Improved Detection of Inter-turn Short Circuit Faults in PMSM Drives using Principal Component Analysis // 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 2018. pp. 154-159.DOI: 10.1109/SPEEDAM.2018.8445403.

Silva J., Cardoso A. Bearing failures diagnosis in three-phase induction motors by extended Park's vector approach // 31st Annual Conference of IEEE Industrial Electronics Society. 2005. DOI: 10.1109/IECON.2005.1569315.

Messaoudi M., Flah A., Alotaibi A. et al. Diagnosis and fault detection of rotor bars in squirrelcage induction motors using combined park's vector and extended park's vector approaches // Electronics. 2022. Vol. 11 (3). DOI: 10.3390/electronics11030380.

Asad B., Vaimann T., Belahcen A., Kallaste A. Broken Rotor Bar Fault Diagnostic of Inverter Fed Induction Motor Using FFT, Hilbert and Park's Vector Approach // 2018 XIII International Conference on Electrical Machines (ICEM). 2018. Pp. 2352-2358. DOI: 10.1109/ICELMACH.2018.8506957.

Kandukuri S., Huynh V., Robbersmyr K. Diagnostics of stator winding failures in wind turbine pitch motors using Vold-Kalman filter // IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 2019. Pp. 5992-5997. DOI: 10.1109/IECON.2019.8926983.

Pires V., Foito D., Martins J., Pires A. Detection of stator winding fault in induction motors using a motor square current signature analysis (MSCSA) // 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG). 2015. Pp. 507-512.DOI: 10.1109/PowerEng.2015.7266369.

Becker V., Schwamm T., Urschel S., Antonino-Daviu J. Fault Detection of Circulation Pumps on the Basis of Motor Current Evaluation // IEEE Transactions on Industry Applications. 2021.Vol. 57 (5). Pp. 4617-4624. DOI: 10.1109/TIA.2021.3085697.

Yeolekar S., Mulay G., Helonde J. Outer race bearing fault identification of induction motor based on stator current signature by wavelet transform // 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). 2017. pp. 2011-2015.DOI: 10.1109/RTEICT.2017.8256951.

IshkovaI., Vítek O. Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis // 2015 16th International Scientific Conference on Electric Power Engineering (EPE). 2015. p. 682-686. DOI: 10.1109/EPE.2015.7161130.

Rafaq M., Faizan Shaikh M., Park Y., Lee S. Reliable Airgap Search Coil Based Detection of Induction Motor Rotor Faults Under False Negative Motor Current Signature Analysis Indications // IEEE Transactions on Industrial Informatics. 2022. Vol. 18 (5). Pp. 3276-3285. DOI: 10.1109/TII.2020.3042195.

Pires V., Martins F., Pires A., Rodrigues L. Induction motor broken bar fault detection based on MCSA, MSCSA and PCA: A comparative study // IEEE 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). 2016. Pp. 298-303. DOI:10.1109/CPE.2016.7544203.

Dehina W., Boumehraz M., Kratz F., Fantini J. Diagnosis and Comparison between Stator Current Analysis and Vibration Analysis of Static Eccentricity Faults in The Induction Motor. // 4th International Conference on Power Electronics and their Applications (ICPEA). 2019. pp. 1-4, DOI: 10.1109/ICPEA1.2019.8911193.

Bhaumik D., Sadda A., Punekar G. Vibration Signal Analysis of Induction Motor Bearing Faults: Some Aspects // 2023 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES). 2023. Pp. 1-4. DOI: 10.1109/ICSSES58299.2023.10200270.

Noureddine B., Remus P., Raphael R., Salim S. Rolling Bearing Failure Detection in Induction Motors using Stator Current, Vibration and Stray Flux Analysis Techniques // IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. 2020. Pp. 1088-1095. DOI: 10.1109/IECON43393.2020.9254401.

Aniket M., Babasaheb P. A Review: Condition Based Techniques and Predictive Maintenance for Motor. // 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS).2021. Pp. 807-813. DOI:10.1109/ICAIS50930.2021.9395903.

Bhandari M., Silwal B. Development of Machine Learning Model Applied to Industrial Motors for Predictive Maintenance // 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). 2022. Pp. 1632-1635. DOI: 10.1109/IIHC55949.2022.10060358.

Panov S., Nikolov A., Panova S. Review of standarts and systems for predictive maintenance // Science, Engineering and Education. 2021. Vol. 6 (1). DOI: 10.59957/see.v6.i1.2020.1

Kumar S., Mukherjee D., Kumar. P. etal. A Comprehensive Review of Condition Based Prognostic Maintenance (CBPM) for Induction Motor // IEEE Access. 2019. Vol. 7, pp. 90690-90704. DOI: 10.1109/ACCESS.2019.2926527.

ГОСТ РИСО 13372-2013 Контроль состояния и диагностика машин. Термины и определения: Национальный стандарт Российской Федерации: дата введения 2013-11-22 / Федеральное агентство по техническому регулированию. Изд. официальное. М.: Стандартинформ, 2019. 20 с.

Atamuradov V., Camci F. Segmentation based feature evaluation and fusion for prognostics feature selection based on segment evaluation // The International Journal of Prognostics and Health Management. 2017. Vol. 8(2). Pp. 1-14. DOI: 10.36001/ijphm.2017.v8i2.2643.

Atamuradov V., Medjaher K., Camci F. et al. Machine Health Indicator Construction Framework for Failure Diagnostics and Prognostics // Journal of Signal Processing Systems. 2020. Vol. 92 (8). DOI: 10.1007/s11265-019-01491-4.

Cernuda C. On the relevance of preprocessing in predictive maintenance for dynamic systems // Predictive Maintenance in Dynamic Systems. 2019. pp. 53-93. DOI: 10.1007/978-3-030-05645-2_3.

Haneen Arafat Abu Alfeilat, Ahmad B.A. Hassanat, Omar Lasassmehet al. Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review // Big Data. 2019.Vol. 7(4). Pp. 221-248. DOI: 10.1089/big.2018.0175.

Romanssini M., de Aguirre P., Severo L., Girardi A. A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery // Eng - Advances in Engineering. 2023.Vol. 4(3). pp.1797-1817. DOI: 10.3390/eng4030102.

ГОСТ Р ИСО 13380-2002 Диагностирование машин по рабочим характеристикам. Общие положения: Межгосударственный стандарт: дата введения 2005-08-11 / Федеральное агентство по техническому регулированию. - Изд. официальное. М.:Стандартинформ, 205. 23 с.

ГОСТ Р ИСО 13374-1-2011. Контроль состояния и диагностика машин. Обработка, передача и представление данных: Национальный стандарт Российской Федерации: дата введения 2012-12-01 / Федеральное агентство по техническому регулированию. Изд. официальное. М.:Стандартинформ, 2018. 20 с.

FossierS.Robic P. Maintenance of complex systems - From preventive to predictive // 2017 12th International Conference on Live Maintenance (ICOLIM). 2017. pp. 1-6. DOI: 10.1109/ICOLIM.2017.7964123.

Gu C., He Y., Han X, Chen Z. Product quality oriented predictive maintenance strategy for manufacturing systems // 2017 Prognostics and System Health Management Conference (PHM-Harbin). 2017. pp. 1-7.DOI: 10.1109/PHM.2017.8079213.

Published

01.04.2025

How to Cite

Sannikov П. А., & Lekomtsev П. В. (2025). Conditional monitoring and remaining useful life prediction of electric motor in predictive maintenance: review. Intellekt. Sist. Proizv., 23(1), 82–93. https://doi.org/10.22213/2410-9304-2025-1-82-93

Issue

Section

Articles