Numerical modeling of separation flow at start up of nozzles
Keywords:
gas dynamics, start up of a nozzle, separation flow, free shock separation (FSS), restricted shock separation (RSS)Abstract
The processes of start up of nozzles are considered. This paper presents results of researching the separation flow in nozzles. Asymmetrical currents obtained in nozzles are given in this article and the reasons of their generation and further transformation are analyzed. Numerical results obtained by various software means are compared.References
Experimental Evaluation of Side-load Characteristics on TP, CTP and TO nozzles / T. Tomita, H. Sakamoto, T. Onodera et al. // AIAA Paper, 04–3678, 2004.
Zmijanović, V.; Rašuo, B.; Chpoun, A. Flow Separation Modes and Side Phenomena in an Overexpanded Nozzle // FME Transactions. – 2012. – Vol. 40, No 3. – Pp. 111-118. – URL: http://www.mas.bg.ac.rs/istrazivanje/biblioteka/publikacije/ Transactions_FME/Volume40/3/03_VZmijanovic.pdf (дата обращения: 09.12.2013).
Wang, T.-S. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle // Shock Waves – An International Journal on Shock Waves, Detonations and Explosions. – 2009. – Vol. 19, Iss. 3. – Pp. 251-264.
Zhao, X.; Bayyuk, S.; Zhang, S. Aeroelastic response of rocket nozzles to asymmetric thrust loading // Computers & Fluids. – 10 May 2013. – Vol. 76. – Pp. 128-148.
Shah, S. B. H., Zahir, S. Numerical Simulation for the asymmetric λ-shock and plume mixing in various area ratios supersonic nozzles // Proceedings of the 13th Asian Congress of Fluid Mechanics, 17-21 Dec. 2010, Dhaka, Bangladesh. – URL: http://bsmeicte2012.iutoic-dhaka.edu/proceedings/13th-acfm-2010/contributed/aeroaconstics/313.pdf (дата обращения: 09.12.2013).
Глушко Г. С., Иванов И. Э., Крюков И. А. Численное моделирование отрывных течений в соплах // Физико-химическая кинетика в газовой динамике. – 2010. – № 1. – С. 172–179.
Копысов С. П., Тонков Л. Е., Чернова А. А. Постановка граничных и начальных условий при моделировании процесса запуска сопла // Химическая физика и мезоскопия. – 2013. – Т. 16, № 2. – С. 216–222.
Numerical simulation of internal flow transition in a rocket nozzle / L. Garell , G. R. R. Rodríguez , R. R. Paz et al. // Mecánica Computacional. 2012. – Vol. XXXI. – Pp. 123-135. – URL: http://www.cimec.org.ar/ojs/index.php/mc/article/ viewFile/4055/3982 (дата обращения: 09.12.2013).
Малик Т. И., Тагиров Р. К. Полуэмпирический метод расчета турбулентного отрывного течения в коническом сопле Лаваля на режиме перерасширения // Изв. АН СССР. Механика жидкости и газа. – 1988. – № 6. – С. 60–66.
Патанкар С. Численные методы решения задач теплообмена и динамики жидкости / пер. с англ. под ред. Виленского. – М. : Энергоатомиздат, 1984. – 124 с. – URL: http://lib.kbsu.ru/Elib/books/18/50/275.b/%D0%9F%D0%B0%D1%82%D0%B0%D0%BD%D0%BA%D0%B0%D1%80_%D0%BF%D0%BE%D0%BB%D0%BD.pdf (дата обращения: 09.12.2013).
Копысов С. П., Тонков Л. Е., Чернова А. А. Двухстороннее связывание при моделировании взаимодействия сверхзвукового потока и деформируемой пластины. Сравнение численных схем и результатов эксперимента // Вычислительная механика сплошных сред. – 2013. – Т. 6, № 1. – С. 78–85.
Van Leer, B. Towards the Ultimate Conservative Difference Scheme III. Upstream-Centered Finite-Difference Schemes for Ideal Compressible Flow // J. Comp. Phys. – 1977. – Vol. 32. – P. 263-275. – URL: http://csclub.uwaterloo. ca/~lbovard/ finite-volume/vanleer-3.pdf (дата обращения: 09.12.2013).
OpenFOAM® Documentation, version 2.1.1, User Guide. – 211 p.
ANSYS® Academic Research, Release 12.1, Help system. ANSYS Inc.