Planning a numerical experiment to determine the hydrodynamic characteristics of the body with helical symmetry
Keywords:
viscous motion, Navier-Stokes equations, numerical experiment, helical symmetryAbstract
On the basis of numerical experiments using a solution of the Navier-Stokes equations, the interaction of the helical body with liquid motion is investigated. Numerical experiment is performed using central symmetric orthogonal composition plan of the second-order. The quadratic dependences of the force and moment on the translational and angular velocity of the body motion are obtained.References
Childress S., Spagnolie S. E., Tokieda T. A bug on a raft: recoil locomotion in a viscous fluid // J. Fluid Mech., 2011, vol. 669, p. 527–556.
Vetchanin E. V., Mamaev I. S., Tenenev V. A. The Self-propulsion of a Body with Moving Internal Masses in a Viscous Fluid // Regular and Chaotic Dynamics, 2013, 18 (1-2), p. 100–117.
Vetchanin E. V., Kilin A. A., Tenenev V. A., Shaura A. S. Numerical simulation of motion in the viscous fluid of a three-axial ellipsoid controlled by three rotors. // Fourth International Conference «Geometry, Dynamics, Integrable Systems GDIS 2013: Book of abstracts. – Moscow-Izhevsk: Publishing Center «Institute of Computer Scienc», 2013, p. 54–55.
Воинов О. В. Инерциальное движение тела в идеальной жидкости из состояния покоя // Прикладная механика и техническая физика. – 2008. – Т. 49. – С. 214–220.
Childress S., Spagnolie S. E., Tokieda T. A bug on a raft: recoil locomotion in a viscous fluid // J. Fluid Mech., 2011, vol. 669, p. 527–556.
Рамоданов C. M., Тененев В. А. Движение тела с переменной геометрией масс в безграничной вязкой жидкости // Нелинейная динамика. – 2011. – Т. 7 ; № 3. – С. 635–647.
Воинов О. В. Указ. соч.
Vetchanin E. V., Mamaev I. S., Tenenev V. A. The Self-propulsion of a Body with Moving Internal Masses in a Viscous Fluid // Regular and Chaotic Dynamics, 2013, 18 (1-2), p. 100–117.
Сидняев Н. И. Теория планирования эксперимента и анализ статистических данных : учеб. пособие. − М. : Издательство Юрайт; ИД Юрайт, 2011. − 399 с.