Properties of Functional Materials on Basis of Hybrid Polymer Composites with Nano-Carbon Additives
DOI:
https://doi.org/10.22213/2410-9304-2016-4-142-145Keywords:
carbon nanotubes, polymer nanocomposites, electromagnetic response, functionalized carbon materialsAbstract
Polymer nanocomposites comprising various forms of nanocarbon: carbon nanotubes, graphite and thermally expanded graphite are investigated. Epoxy resin, polymethyl methacrylate, polyvinyl acetate and styrene-biodegradable acrylate (SAC) were used as polymer matrices. A model describing the formation of the electromagnetic response of multi-walled carbon nanotubes of finite and infinite length in the microwave frequency range is created. This model allows us to estimate the effective permittivity of a disoriented disordered composite with carbon nanotubes. Methods for functionalization of carbon nanotubes by grafting amino groups and epoxy groups are developed and experimentally tested. The techniques for selective modification of graphene and carbon nanotubes with nanoparticles of copper, cobalt, and iron oxide are created. A comparative analysis of the electromagnetic response of polymer composites with different forms of carbon in the microwave frequency range (26-37 GHz) and low-frequency range (20 Hz - 1 MHz) is performed. Functionalized carbon materials are experimentally obtained and their electromagnetic properties are studied. It was shown that composites containing graphene nanoplates modified with iron oxide nanoparticles form a thin film in a magnetic field structure with a significantly larger surface area than without the field. Polymer nanocomposites have been synthesized on the basis of conductive polymers: polyethylenedioxythiophene and polystyrenesulfonate (PEDOT: PSS) with additives of graphene nanoparticles modified with copper, cobalt or iron oxide. Such materials form stable films with properties defined by the filler (conductive or magnetic).References
P. Kuzhir, A. Paddubskaya, D. Bychanok, A. Nemilentsau, M. Shuba, A. Plusch, S. Maksimenko, S. Bellucci, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys // Thin Solid Films. 2011. Vol. 519(12). P. 4114-4118.
D. Bychanok, M. Kanygin, A. Okotrub, M. Shuba, A. Paddubskaya, A. Pliushch, P. Kuzhir, and S. Maksimenko // JETP Letters. 2011. Vol. 93(10). P. 607-611.
D. Bychanok, P. Kuzhir, S. Maksimenko, S. Bellucci, and C. Brosseau // J. Appl. Phys. 2013. Vol. 113(12). P. 124103-6.
P. Kuzhir, A. Paddubskaya, D. Bychanok, A. Nemilentsau, M. Shuba, A. Plusch, S. Maksimenko, S. Bellucci, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys // Thin Solid Films. 2011. Vol. 519(12). P. 4114-4118.
D. Bychanok, P. Kuzhir, S. Maksimenko, S. Bellucci, and C. Brosseau // J. Appl. Phys. 2013. Vol. 113(12). P. 124103-6.
D. Bychanok, A. Plyushch, G. Gorokhov, V. Skadorov, P. Kuzhir, S. Maksimenko, J. Macutkevic, A. Ortona, L. Ferrari, E. Rezaei, A. Szczurek, V. Fierro, and A. Celzard // In Electromagnetics in Advanced Applications (ICEAA), 2015, International Conference on. 2015. P. 43-46.
P. Kuzhir, V. Ksenevich, A. Paddubskaya, T. Veselova, D. Bychanok, A. Pliyushch, A. Nemilentsau, M. Shuba, S. Maksimenko, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, and S. Bellucci // Nanoscience and Nanotechnology Letters. 2011. Vol. 3(6), P. 889-894.
A.K. Geim, S.V. Dubonos, I.V. Grigorieva, et al. // Nature Mater. 2003. Vol. 2(7). P. 461.
F. Qin, C. Brosseau // J. Appl. Phys. 2012. V. 111, P. 061301.
A. C. Ferrari J. C. Meyer V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A.K. Geim // PRL. 2006. Vol. 97. P. 187401.
Плющ А. О., Поддубская О.Г., Кужир П.П. и др. // Изв. вузов. Физика. - 2016. - Т. 59. - С. 99-104.