Study of the Influence of the Initial Clearance on the Dynamics of the Safety Valve Opening

Authors

  • T. Raeder Kalashnikov ISTU, Izhevsk, Russia
  • V. A. Tenenev Kalashnikov ISTU, Izhevsk, Russia
  • N. V. Paklina Kalashnikov ISTU, Izhevsk, Russia

DOI:

https://doi.org/10.22213/2410-9304-2018-2-28-40

Keywords:

safety valve, nonstationary gas-dynamic processes, numerical simulation techniques, adjoint problem of gas dynamics and mechanics of valve

Abstract

The task of safety valve calculation is to determine the throughput and the dynamic forces arising at actuation of the safety valve. To solve the adjoint problem of calculating the safety valve operation dynamics, the equations of gas dynamics and the equations of mechanical motion of the valve disc are applied. The numerical method of S. K. Godunov in axisymmetric setting used to solve the adjoint problem of the spring safety valve dynamics has proved the ability to correctly calculate the magnitude of gas dynamic force. Based on the results of safety valve tests and numerical calculations, a function has been constructed that is a universal characteristic of the safety valve in question. The function is used to analyze the dynamic characteristics of the operation process at different pressures. On basis of theoretical analysis some relations have been obtained allowing to determine kinematic characteristics at any disk lift value and to set the initial conditions for adjoint problem solution. The numerical solution of the adjoint problem of safety valve dynamics confirms the possibility of setting the required initial clearance without loss of calculation accuracy.

Author Biographies

T. Raeder, Kalashnikov ISTU, Izhevsk, Russia

PhD Applicant

V. A. Tenenev, Kalashnikov ISTU, Izhevsk, Russia

DSc (Physics and Mathematics), Professor

N. V. Paklina, Kalashnikov ISTU, Izhevsk, Russia

References

ГОСТ 12.2.085-2002. Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности. Введен 2003-07-01. М. : Стандартинформ, 2007. 12 с.

ГОСТ 31294-2005. Клапаны предохранительные прямого действия. - Введен 2008-10-01. М. : Стандартинформ, 2008. 31 с.

Черноштан В. И., Благов Э. Е. Газодинамический расчет предохранительного клапана и выпускного трубопровода // Арматуростроение. 2011. Ч. 2. № 3 (72). С. 61-65.

Pentair Pressure Relief Valve Engineering Handbook. Forward Technical Publication, no. TP-V300, 2015, р. 800.

ISA-S75.01-1985 (R 1995) Flow Equations for Sizing Control Valves, p. 50.

Gábor Licskó, Alan Champneys, Csaba Hős. Dynamical Analysis of a Hydraulic Pressure Relief Valve. Proceedings of the World Congress on Engineering, 2009. Vol. II. WCE 2009, July 1 - 3, 2009, London, U. K.

Hos C. J., Champneys A. R., Paulc K., McNeelyc M. Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms Journal of Loss Prevention in the Process Industries, 31, (2014), рр. 70-81.

Dimitrov S., Komitovski M. Static and dynamic characteristics of direct operated pressure relief valves. Machine design, Vol. 5 (2013), no.2, pp. 83-86.

Gábor Licskó, Alan Champneys, Csaba Hős. Dynamical Analysis of a Hydraulic Pressure Relief Valve. Proceedings of the World Congress on Engineering, 2009. Vol. II. WCE 2009, July 1 - 3, 2009, London, U. K.

Hos C. J., Champneys A. R., Paulc K., McNeelyc M. Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms Journal of Loss Prevention in the Process Industries, 31, (2014), рр. 70-81.

RELAP5/mod 3.3 code manual. Vol. I. Information systems laboratories, Inc., Rockville, Maryland, Idaho Falls, Idaho, 2003.

Anna Budziszewski, Louise Thoren. CFD simulation of a safety relief valve for improvement of a one-dimensional valve model in RELAP5. Master’s thesis in the Master’s program Innovative and Sustainable Chemical Engineering. Department of Applied Physics, Division of Nuclear Engineering, Chalmers University of Technology. Gothenburg, Sweden 2012, p. 82.

Beune A. Analysis of high-pressure safety valves Eindhoven: Technische Universiteit Eindhoven. 2009, p. 134. DOI: 10.6100/IR652510

A CFD analysis of the dynamics of a direct-oprated safety relief valve mounted on a pressure vessel / X. Song, L. Cui, M. Cao, W. Cao, Y. Park, W.M. Dempster // Energy Conversion and Management, 2014. Pp. 407-419.

Численное моделирование газодинамики предохранительного клапана / Т. Редер, В. А. Тененев, М. Р. Королева, О. В. Мищенкова, О. А. Воеводина // Интеллектуальные системы в производстве. 2017. Т. 15, № 4. С. 4-11.

Численное решение многомерных задач газовой динамики / С. К. Годунов, А. В. Забродин, М. Я. Иванов, А. Н. Крайко, Г. П. Прокопов. М. : Наука, 1976. 400 c.

Там же.

Тененев В. А., Горохов М. М., Русяк И. Г. Численное исследование горения частиц в двухфазном потоке // Математическое моделирование. 1997. Т. 9, № 5. С. 87-96.

A CFD analysis of the dynamics of a direct-oprated safety relief valve mounted on a pressure vessel / X. Song, L. Cui, M. Cao, W. Cao, Y. Park, W.M. Dempster // Energy Conversion and Management, 2014. Pp. 407-419.

Wesseling, Pieter, Dr. Principles of computational fluid dynamics / Springer series in computational mathematics, 1991. ISSN 0179-3632; 29, p. 644.

Численное моделирование газодинамики предохранительного клапана / Т. Редер, В. А. Тененев, М. Р. Королева, О. В. Мищенкова, О. А. Воеводина // Интеллектуальные системы в производстве. 2017. Т. 15, № 4. С. 4-11.

Published

02.07.2018

How to Cite

Raeder Т., Tenenev В. А., & Paklina Н. В. (2018). Study of the Influence of the Initial Clearance on the Dynamics of the Safety Valve Opening. Intellekt. Sist. Proizv., 16(2), 28–40. https://doi.org/10.22213/2410-9304-2018-2-28-40

Issue

Section

Articles