Optimum Control of Wind Power Installation
DOI:
https://doi.org/10.22213/2410-9304-2018-3-70-77Keywords:
wind generator, time estimation, transient process, angular speed, modelingAbstract
The problem is solved on working out of a principle of effective automated control of the wind electric installation, aimed at the increase in stability of rotation frequency of a rotor wind wheel and reduction of dynamic loading of basic elements. It promotes improvement of indicators of reliability of electro supply of the basic control in the conditions of the incomplete information on characteristics of the meteorological and electro power conditions essentially changing in time. The paper proposes the control method of the process of electric power production by formation of the angular speed of a wind wheel rotor and the angle of position of the blade on the basis of anticipation of changes of the wind speed and the size of the consumed electric power, at small time intervals (the average quadratic error of an expectation mean of meteorological parameter does not exceed 4 %). Definition of the time interval during which the averaging of the measured values is carried out, is made by means of the account of chronology of character of change of an environment to minimize the time of the control of target operated parameters that gives the chance to raise stability of frequency rotation of a rotor wind turbine at the expense of reduction of duration of the transient process on the average twice. The paper considers the principle of formation of the combined control at the expense of the coordinated interaction from the basic and offered methods of acceptance of operating decisions, on the basis of differentiation of the access time to the device of changing the position of blades which is realized on each step according to the algorithm of development of operating influences depending on the character of changing the external revolting influences. The initial data for the algorithm operation are the design values of the angular speed of a rotor wind wheel at a predicted interval of time, the size of a deviation of the design value of the angular speed from nominal and the deviation sign. If the angular speed changes to the largest, and its deviation exceeds the admissible value, then the operating decisions are accepted from the proposed control method, otherwise decisions on development of operating influences are taken from the basic control of the process of maintenance of the rating value of speed of rotation of the wind wheel.References
Шнеерсон Р. М. Разработка гибридного ветроэнергетического комплекса для электроснабжения удаленных потребителей Мурманской области // Вестник науки Сибири. 2015. № 15. С. 55-58.
Степанов С. Ф., Павленко И. М., Ербаев Е. Т. Обеспечение эффективной работы мультимодульной ветроэлектростанции при изменении скорости ветра и нагрузки // Современные проблемы науки и образования. 2013. № 6. С. 93-94.
Суяков С. А. Проблемы интеграции ветроустановок в единую энергетическую систему России // Инженерный вестник Дона. 2014. № 3. С. 10-23.
Пионкевич В. А. Математическое моделирование ветротурбины для ветроэнергетической установки с асинхронным генератором методом частотных скоростных характеристик // Вестник ИрГТУ. 2016. № 3. С. 83-88.
Emadifar R., Tohidi D., Eldoromi M. Controlling Variable Speed Wind Turbines Which Have Doubly Fed Induction Generator by Using of Internal Model Control Method // International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 2016. no. 5. pp. 3464-3471.
Balamurugan N., Selvaperumal S. Intelligent controller for speed control of three phase induction motor using indirect vector control method in marine applications // Indian journal of Geo Marine Sciences. 2018, no. 47, pp. 1068-1074.
Subbaian V., Sasidhar S. Maximum energy capture of variable speed variable pitch wind turbine by using RBF neural network and fuzzy logic control // International Research Journal of Engineering and Technology. 2015, no. 2, pp. 493-500.
Haiying D., Lixia Y., Guohan Y., Hongwei L. Wind Turbine Active Power Control Based on Multi-Model Adaptive Control // International Journal of Control and Automation. 2015, no. 8, pp. 273-284.
Vijayalaxmi B., Bheema K. Individual Pitch Control of Variable Speed Wind Turbines Using Fuzzy Logic with DFIG // International Journal of research in advanced engineering technologies. 2016, no. 5, pp. 45-52.
Буяльский В. И. Метод повышения эффективности управления режимом работы ветротурбины // Энергетик. 2013. № 9. С. 126-130.
Буяльский В. И. Компьютерное моделирование регулирования запаздывания угловой скорости ветроколеса // Энергетик. 2014. № 12. С. 27-29.
Веремей Е. И. Пособие «Nonlinear Control Design Blockset». URL: http://matlab.exponenta.ru/nonlinecondes/book1/preface.php (дата обращения: 24.05.2017).
Буяльский В. И. Компьютерное моделирование регулирования запаздывания угловой скорости ветроколеса // Энергетик. 2014. № 12. С. 27-29.
Буяльский В. И. Комбинированный метод управления ветротурбиной // Энергетик. 2016. № 4. С. 18-20.
Буяльский В. И. Метод повышения эффективности управления режимом работы ветротурбины // Энергетик. 2013. № 9. С. 126-130.
Буяльский В. И. Компьютерное моделирование регулирования запаздывания угловой скорости ветроколеса // Энергетик. 2014. № 12. С. 27-29.