Generalized Mathematical Model of Non-Oil Petroleum. Implementation of Modules Answering for Nodes, Connections, Limitations of Area of Deposit

Authors

  • S. V. Denisov Ufa State Petroleum Technical University
  • V. E. Lyalin Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2410-9304-2018-3-122-128

Keywords:

hydrodynamic modeling, multiphase mixture, non-volatile oil

Abstract

Computer technologies in the field of hydrodynamic modeling and exploration of deposits currently have a tendency of a steady growth of interest on the part of oil companies to introduce them at the enterprise. They allow us to justify the development strategy of oil fields, use them to solve production problems. The overwhelming number of available commercial simulators of deposits is developed using the classical mathematical approach, whose goal is to obtain a system of algebraic hydrocarbon filtration equations. However, with this approach, it is very difficult to ensure the proper level of modularity and standardization of the simulator code, since the base building blocks corresponding to this approach must be provided with too much information. Therefore, an urgent task is to develop a universal approach to the creation of a unified software package for the hydrodynamic modeling of oil fields. The subject of the study is the development of a relatively simple, universal and modular field simulator. The classical approach, building blocks of which involve the final volumes (or grid blocks), does not meet the requirements of a high level of standardization and modularity. Therefore, a new approach is proposed in which the region is divided into different building blocks: nodes and connections. The implementation of modules responsible for nodes, for connections, for constraints is presented.

Author Biographies

S. V. Denisov, Ufa State Petroleum Technical University

PhD in Engineering, Associate Professor

V. E. Lyalin, Kalashnikov ISTU

DSc in Engineering, DSc in Geology and Mineralogy, Professor

References

Азиз Х., Сеттари Э. Математическое моделирование пластовых систем / пер. с англ. ; под ред. М. М. Максимова. М. : Ижевск : Институт компьютерных исследований, 2004. 416 с. Репринтное издание. Оригинальное издание: М. : Недра, 1982.

Abou-Kassem J. H., Farouq Ali S. M., Islam M. R. Petroleum reservoir simulation: a basic approach, Gulf, Houston, 2006. 445 c.

Каневская Р. Д. Математическое моделирование гидродинамических процессов разработки месторождений углеводородов. М. : Ижевск : Институт компьютерных исследований, 2002. 140 с.

Taber J. J. Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. SPEJ, 1969. No. 1, рр. 3-12.

Thiele M. R. Streamline simulation // 6th International Forum on Reservoir Simulation, 3-7 September 2001. Schloss Fuschl, Austria.

Thiele M. R., Batycky R. P. and Thomas L. K. Miscible WAG simulations using streamlines // 8th European Conference on the Mathematics of Oil Recovery, 3-6 September 2002. Freiberg, Germany.

Thiele M. R. Modeling multiphase flow in heterogeneous media using streamtubes, Ph. D. Thesis, Stanford University, Stanford, California, 1994. 203 р.

Truesdell C., Noll W. The non-linear field theories of mechanics. Springer, Berlin, 1965. 591 р.

Tureyen O. I., Karacali O., Caers J. A. Parallel, Multiscale Approach to Reservoir Modeling // 9th European Conference on the Mathematics of Oil Recovery, 30 August - 2 September 2004. Cannes, France.

Juanes R. Displacement theory and multiscale numerical modeling of three-phase flow in porous media, Ph. D. Thesis, University of California, Berkeley, California, 2003. 377 p.

Published

11.10.2018

How to Cite

Denisov С. В., & Lyalin В. Е. (2018). Generalized Mathematical Model of Non-Oil Petroleum. Implementation of Modules Answering for Nodes, Connections, Limitations of Area of Deposit. Intellekt. Sist. Proizv., 16(3), 122–128. https://doi.org/10.22213/2410-9304-2018-3-122-128

Issue

Section

Articles