Scale Factor Nonlinearity of Hemispherical Resonator Gyro

Authors

  • G. A. Trutnev Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2410-9304-2018-4-138-144

Keywords:

measuring device, Hemispherical Resonator Gyro, device errors, scale factor, nonlinearity of scale factor compensation

Abstract

The measuring device - the hemispherical resonator gyro working in the mode of free fluctuations is considered in the paper. Increase in accuracy of the hemispherical resonator gyro always remains a relevant task. The hemispherical resonator gyro is the measuring system comprising the measuring component. The imperfection of the measuring component affects precision characteristics of the device in general. Errors in the measuring component lead to emergence of nonlinearity of the large-scale coefficient. In the paper this type of an error is investigated; the approach is offered to the increase in accuracy of an output signal due to the use of information on nonlinearity of the large-scale coefficient. The possible reasons of nonlinearity of large-scale coefficient like different coefficients of strengthening of sensors of movement of the system of renting, deviations from the necessary angular placement of sensors, and nonlinearity of transformation of sensors are investigated. The major factor of an error - angular orientation of a wave comes to light. Influence of nonlinearity of the large-scale coefficient on a control system is analyzed. Several ways of measurement of nonlinearity and assessment of its accuracy are given. Recommendations on what ways of measurement are more convenient and more effective in certain cases are made. The influence of the wave drift and noise component of signals on the accuracy of assessment of nonlinearity of the large-scale coefficient is described. The technique of increasing the accuracy of an output signal due to fine tuning in the computing component of the hemispherical resonator gyro of phase variables of a wave picture is offered. The residual influence of nonlinearity is offered to be reduced due to compensation of the error. Questions of implementation of nonlinearity compensation are analyzed. Another possible factor of nonlinearity - the temperature - is considered. The way of measurement of this factor is described. Unification of models of nonlinearity and drift is proposed in order to increase the efficiency of compensation of errors of an output signal of the hemispherical resonator gyro.

Author Biography

G. A. Trutnev, Kalashnikov ISTU

Kalashnikov ISTU

References

Измерительно-вычислительный комплекс ТВГ / Г. А. Трутнев, С. Б. Назаров, К. К. Перевозчиков, А. В. Щенятский // Интеллектуальные системы в производстве. 2017. Т. 15, № 3. С. 62-72. DOI: 10.22213/2410-9304-2017-3-62-72.

Климов Д. М., Журавлев В. Ф., Жбанов Ю. К. Кварцевый полусферический резонатор (Волновой твердотельный гироскоп). М. : ФГБУН ИПМех им. А. Ю. Ишлинского РАН, 2017. 193 с.

Новое поколение ИНС на основе ВТГ / С. Негри, Э. Лабарр, К. Линьон, Э. Брунштейн, Э. Салаён // Гироскопия и навигация. 2016. Т. 24. № 1 (92). DOI: 10.17285/0869-7035.2016.24.1.049-059.

Qiu B., Li P., Wang J. Full Digital Control of Hemispherical Resonator Gyro under Force-to-Rebalance Mode // IEEE Sensors Journal. Vol. 15. No. 1. 2015. Pp. 71-75. DOI: 10.1109/JSEN.2014.2339229.

Yi G., Qi Z., Xi B., Xie Y. Modeling of Acceleration Influence on HRG forsing system // Mathematical problems in engineering. Vol. 2015. 2015. Pp. 104041. DOI. 10.1155/2015/104041.

Bryan G. H. On the beats in the vibrations of a revolving cylinder or bell // Proc. Camb. Phil. Soc. Math. Phys Sci. 1890 Vol. 7. Pp. 101-111.

Лунин Б. С., Матвеев В. А., Басараб М. А. ВТГ. Теория и технология. М. : Радиотехника, 2014. 176 с.

Матвеев В. А., Липатников В. И., Алехин А. В. Проектирование волнового твердотельного гироскопа : учеб. пособие для втузов. М. : Изд-во МГТУ им. Н. Э. Баумана, 1997. 168 с.

Журавлев В. Ф. Двумерный осциллятор Ван дер Поля с внешним управлением // Нелинейная динамика. 2016. Т. 12. № 2. С. 211-222. DOI: 10.20537/nd1602004.

Zhbanov Y. K. Amplitude Control Contour in a Hemispherical Resonator Gyro with Automatic Compensation for Difference in Q-factors // Mechanics of Solids. Vol. 43. No. 3. 2008. Pp. 328-332. DOI: 10.3103/S0025654408030035.

Мельников Р. В., Трутнев Г. А., Щенятский А. В. Модель определения дефекта разнодобротности твердотельного волнового гироскопа // Интеллектуальные системы в производстве. 2018. Т. 16. № 2. С. 69-77. DOI 10.22213/2410-9304-2018-2-69-77.

Журавлев В. Ф., Линч Д. Д. Электрическая модель ВТГ // Механика твердого тела. 1995. № 5. С. 12-25.

Компенсация дрейфа ТВГ / Г. А.Трутнев, С. Б. Назаров, К. К. Перевозчиков, А. В. Щенятский // Вестник ИжГТУ имени М. Т. Калашникова. 2018. Т. 21. № 3. С. 198-204. DOI 10.22213/2413-1172-2018-3-198-204.

Журавлев В. Ф. Температурный дрейфа ВТГ // Механика твердого тела. 2018. № 3. С. 3-11. DOI: 10.7868/S0572329918030017.

Xu Wang, Wenqi Wu, Zhen Fang, Bing Luo, Yun Li, Qingan Jiang, Temperature Drift Compensation for HRG Based on Natural Frequency // Sensors, 2012. № 12. P. 6434-6446. DOI: 10.3390/s120506434.

Published

25.02.2019

How to Cite

Trutnev Г. А. (2019). Scale Factor Nonlinearity of Hemispherical Resonator Gyro. Intellekt. Sist. Proizv., 16(4), 138–144. https://doi.org/10.22213/2410-9304-2018-4-138-144

Issue

Section

Articles