ADJUSTMENT OF THE TWO-WHEELED MOBILE PLATFORM ROTATIVE MOVEMENT REGULATOR

Authors

  • E. K. Karpov Kurgan State University
  • E. M. Kuznetsova Kurgan State University

DOI:

https://doi.org/10.22213/2410-9304-2019-1-110-116

Keywords:

mobile platform, control object model, control actions shaper, microcontroller

Abstract

The paper provides a brief description of two-wheeled mobile platform parameters. The transfer function type in the canonical form is determined for the studied platform and its coefficients are calculated. Comparison of the output characteristics of the mobile platform rotational motion and its mathematical model showed that with a sufficient degree of reliability the model can be used to calculate the coefficients and adjust the mobile platform regulator. The discrepancy between the experimental and calculated curve is caused by experimental errors. Complete suppression of oscillations and a slight delay at the transient response to the steady-state value output is due to unaccounted components of the transfer function when it is presented by the oscillatory link. Based on the experimental data, the control actions shaper coefficients are calculated as a control system automatic controller of the rotational motion control system of a two-wheeled mobile platform. Researches of principal possibilities of the developed algorithm realization on the microcontroller basis are carried out. The peculiarity of this algorithm is the absence of such solutions for microcontrollers operating systems, as well as the absence of standard libraries for programming such converters on microcontrollers or programmable logic controllers. The applied controller setting allows you to control the process of rotating the mobile platform around the vertical axis faster and more accurately, taking into account changes in the controlled object characteristics.

Author Biographies

E. K. Karpov, Kurgan State University

E. M. Kuznetsova, Kurgan State University

References

Lee K.S., Park Y.S. Residual vibration reduction for a flexible structure using a modified input shaping technique // Robotica. 2002. Vol. 20. P. 553-561.

Alikoc B., Vyhlidal T., Ergenc A.F. Closed-form smoothers and shapers with distributed delay for damped oscillatory modes // Iet Control Theory and Applications. 2016. Vol. 10. No. 18. P. 2534-2542.

Singer N., Singhose W., Seering W. Comparison of filtering methods for reducing residual vibration // European Journal of Control. 1999. Vol. 5 No. 2-4. P. 208-218.

Chatlatanagulchai W., Nithi-uthai S., Intarawirat P. Intelligent Backstepping System to Increase Input Shaping Performance in Suppressing Residual Vibration of a Flexible-Joint Robot Manipulator // Engineering Journal-Thailand. 2017. Vol. 21. No. 5. P. 203-223.

Liang Z., Huang J., Zang Q. Using continuous function shaping to reduce vibration for flexible systems // Proc. 32nd Chinese Control Conference. Xian, 2013. P. 4276-4281.

Singhose W., Vaughan J. Reducing Vibration by Digital Filtering and Input Shaping // Ieee Transactions on Control Systems Technology. 2011. Vol. 19. No. 6. P. 1410-1420.

Dhanda A. Projected Phase-Plane Switching Curves for Vibration Reduction Filters With Negative Amplitudes // Journal of Dynamic Systems Measurement and Control-Transactions of the Asme. 2014. Vol. 136. No. 5. P. 9.

Cole M.O.T., Wongratanaphisan T. Optimal FIR Input Shaper Designs for Motion Control With Zero Residual Vibration // Journal of Dynamic Systems Measurement and Control-Transactions of the Asme. 2011. Vol. 133. No. 2. P. 9.

Cole M. O. T. A class of low-pass FIR input shaping filters achieving exact residual vibration cancelation // Automatica. 2012. Vol. 48. No. 9. P. 2377-2380.

Cole M. O. T., Wongratanaphisan T. A Direct Method of Adaptive FIR Input Shaping for Motion Control With Zero Residual Vibration // Ieee-Asme Transactions on Mechatronics. 2013. Vol. 18. No. 1. P. 316-327.

Pao L.Y. Multi-input shaping design for vibration reduction // Automatica. 1999. Vol. 35. No. 1. P. 81-89.

Peng D.W., Singh T., Milano M. Zero-phase velocity tracking of vibratory systems // Control Engineering Practice. 2015. Vol. 40. P. 93-101.

Sarafin P., Revak M., Chovanec M., Sevcik P. Self-tuning input shaper modelling // 2016 International Conference on Information and Digital Technologies (Idt). 2016. P. 271-273.

Singh T. Jerk limited input shapers // Journal of Dynamic Systems Measurement and Control-Transactions of the Asme. 2004. Vol. 126. No. 1. P. 215-219.

Singh T., Pole-Zero, Zero-Pole Canceling Input Shapers // Journal of Dynamic Systems Measurement and Control-Transactions of the Asme. 2012. Vol. 134. No. 1. P. 10.

Повышение качества переходных процессов при управлении поворотом быстроходной гусеничной машины / С. В. Абдулов, В. Б. Держанский, И. А. Тараторкин, А. И. Тараторкин, А. А. Волков // Вестник Южно-Уральского государственного университета. Серия: Машиностроение. 2018. Т. 18. № 3. С. 21-29.

Держанский В. Б., Тараторкин И. А., Карпов Е. К. Применение shaping-фильтров в системе управления движением быстроходной гусеничной машины // Известия Московского государственного технического университета МАМИ. 2014. Т. 1. № 1 (19). С. 8-13.

Taratorkin I., Derzhanskii V., Taratorkin A. Improving the quality of transient response during automatic control of the turn of a tracked vehicle based on the implementation of structured input shapers // MATEC Web of Conferences. 2017. Р. 06029.

Бесекерский В. А., Попов Е. П. Теория систем автоматического управления. Изд. 4-е, перераб. и доп. СПб. : Профессия, 2003. 752 с.

Карпов Е. К., Кузнецова Е. М. Программно-аппаратная реализация преобразователя управляющих воздействий на базе микроконтроллера ATMEGA328P // Интеллектуальные системы в производстве. 2018. № 4 (16). С. 95-102.

Карпов Е. К., Карпова И. Е. Применение преобразователя управляющих воздействий в системе с обратной связью // Наука XXI века: технологии, управление, безопасность : сборник материалов I международной научно-практической конференции. 2017. С. 220-226.

Published

11.04.2019

How to Cite

Karpov Е. К., & Kuznetsova Е. М. (2019). ADJUSTMENT OF THE TWO-WHEELED MOBILE PLATFORM ROTATIVE MOVEMENT REGULATOR. Intellekt. Sist. Proizv., 17(1), 110–116. https://doi.org/10.22213/2410-9304-2019-1-110-116

Issue

Section

Articles