Studying the Systems Available to Analyze Emotions from Text and Provide Mechanism for Improving Man Machine Interaction
DOI:
https://doi.org/10.22213/2410-9304-2019-4-53-62Keywords:
text, emotions, blogs, communication, topic, analysisAbstract
The development of information technology enables us to develop systems for analysis and data processing. Today, the main source of available data is the Internet. Researchers have developed online and offline systems to analyze this data. Data analysis can be used for various purposes. Our work focuses on the study of systems that are used to analyze emotions from the text. In this paper, we analyze these systems and, based on our research, propose mechanisms to increase their characteristics and improve the scope, as well as compare their performance.
An analysis of emotions extracted from the text can be used to predict future events, people’s reviews of a product or service, identify a group of people by interests and develop a machine that can mimic the behavior of human emotions. Our basic goal is to improve the mechanism of man machine interaction while communication using text. We propose a mechanism that improves the interaction of man and machine by determining the psycholinguistic characteristics of the text that represent human behavior. This mechanism will study the relationship between emotions and the psycholinguistic characteristics of a text. It will facilitate the process of human-machine interaction.References
Stone P.J., Dunphy D.C., Smith M.S. (1966). The General Inquirer: A Computer Approach to Content Analysis / MIT Press - Cambridge, 519 p.
Wiebe, Janyce M. (1990). Identifying Subjectivity characters in Narrative // Proc. 13th International Conference on Computational Linguistics. Helsinki, pp. 401-408.
Vasileios H., Kathleen R. M. (1997). Predicting the Semantic Orientation of Adjectives // Proc. 8th Conference on European chapter of the Association for Computational Linguistics. Spain, pp 174-181.
Peter D. T. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews // Proc. of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, pp. 417-424.
Pang B., Lee L. (2002). Thumbs up? Sentiment Classification using Machine Learning Techniques // Proc. Conference on Empirical Methods in Natural Language Processing. Philadelphia, pp. 79-86.
Denecke K. (2009). Are SentiWordNet scores suited for multi-domain sentiment classification? // Proc. 4th International Conference on Digital Information Management. USA, pp. 33-38.
Abbasi M.M., Beltiukov A.P. (2018). Механизм предварительной обработки текста перед анализом настроений // Proc. 6th Всероссийская конференция, Информационные технологии интеллектуальной поддержки принятия решений. Уфа ; Ставрополь, Россия.
Boley D., Gini M., Gross R. (1999) Partition based clustering for web document categorization // Elsevier Journal for Decision Support Systems , 27 (3), 329-341.
Beltiukov A.P., Abbasi M.M. (2019). Logical analysis of emotions in text from natural language // Vestnik Udmurtskogo Universiteta Matematika Mekhanika Komp'yuternye Nauki, 29 (1), 106-116.
Ermakov A. (2009). Knowledge extraction from text and its processing: Current state and prospects // Proc. of the Computational Linguistics and Intellectual Technologies. 2009, pp. 50-55.
Pivovarova L., Yangarber R. (2013). Adapting the PULS event extraction framework to analyze Russian text // Proc. of the 4th Biennial International Workshop on Balto-Slavic Natural Language Processing. Sofia, Bulgaria, 8-9, pp. 100-109.
Zagibalov., Taras., Belyatskaya et al. (2010). Comparable English-Russian Book Review Corpora for Sentiment Analysis. Russia // Proc. of the 1st Workshop on Computational Approaches to Subjective and Sentiment Analysis, Lisbon, Portugal pp.67-72.
Steinberger J., Lenkova P., Kabadjov M. (2011). Multilingual Entity-Centered Sentiment Analysis Evaluated by Parallel Corpora // Proc. of Recent Advances in Natural Language Processing. Bulgaria, pp. 770-775.
Chetviorkin I., Braslavskiy P., Loukachevich N. (2012). Sentiment Analysis Track at ROMIP 2011 // Computational Linguistics and Intellectual Technologies. Proc. of the International Conference (Dialog). Bekasovo, pp. 1-14.
Sokolova M., Bobicev V. (2009). Classification of emotion words in Russian and Romanian languages // International Conference RANLP. Borovets, Bulgaria, pp. 416-420.
Abbasi M. M., Beltiukov A.P. (2017). Analysis of sentiment and emotion from text written in Russian language // Proc. of the 5th All Russian Conference on Information technology for intelligent decision making support (ITIDS). Ufa, Russian Federation, vol. 1, issue 1, page 42-47.
Abbasi M.M., Beltiukov A.P. (2019). Analysis of emotions from text in Russian Language using syntactic methods // Proc. of the 7th International Science Conference. Information Technology and Systems. Khanty-Mansiysk , Russia, pp. 137-142.
Jaruskululchi C., Kruengkrai. (2003). Generic text summarization using local and global properties of sentences // IEEE/WIC International conference on web intelligence. pp.13-16.
Kiabod M., Naderi M., Sharafi S.M. (2012). A novel method of significant words identification in text summarization // Journal of Emerging Technologies in Web Intelligence, 4 (3).
Abbasi M.M., Beltiukov A.P. (2018). Analyzing emotions from text corpus using Wordspace // Proc. of the 20th international workshop on computer science and information technologies CSIT. Bulgaria, Varna, vol. 3, issue 4, pp. 161-164.
Abbasi M.M., Beltiukov A.P. (2019). Summarizing Emotions from Text Using Plutchik’s Wheel of Emotions // Advances in Intelligent systems research, In Proceedings of the 7th Scientific Conference on Information Technologies for Intelligent Decision Making Support (ITIDS). Atlantis press, vol. 166, pp. 291-294.
Patel N. How to get actionable data from google analytics in 10 minutes // [Электронный ресурс] URL: https://neilpatel.com/blog/how-to-get-actionable-data-from-google-analytics-in-10-minutes/ (дата обращения: 20.04.2018).
Gil Raviv. Sentiment Analysis in Power BI – Part 2 // [Электронный ресурс] URL: https://datachant.com/2016/08/09/sentiment-analysis-power-bi-part-2/ (дата обращения: 10.02.2019).
Tableau Desktop: Start your free 14-Day trial // [Электронный ресурс] URL: https://www.tableau.com/pro-ducts/desktop/download#system-requirements (дата обращ¬ения: 05.04.2019).
Q emoitonapp login // [Электронный ресурс] URL: https://twitter.com/qemotionapp (дата обращения: 11.04.2019).
MoodPatrol login // [Электронный ресурс] URL: https://twitter.com/hashtag/MoodPatrol?src=hash (дата обращения: 19.04.2019).
DeLone W.H., McLean E.R .(1992). Information systems success: The quest for the dependent variable // Information Systems Research, 3(1), 60-95.
Rai A., Lang S. S., Welker R B. (2002). Assessing the Validity of IS Success Models : An Empirical Test and Theoretical Analysis // Information Systems Research, 13(1), 50-69.
Bryd T.R., Thrasher E.H., Lang T., Davidson N.W. (2006). A process-oriented perspective of IS success: Examining the impact of IS on operational cost. Omega, 34 (1), 448-460.
Wu J H., Wang Y M. (2006). Measuring KMS success: A respecification of the DeLone and McLean ́s model // Information & Management, 43(1),728-739.
Lai J.Y., Yang C.C., Tang W.S. (2008).Exploring the Effects of Dependability on Enterprise Applications Success in e-Business // SIGMIS-CPR’06. Claremont, California, USA. pp. 244-52. DOI:10.1145/1125170.1125229.
Carlisle M., James H. (June 1976). Evaluating the impact of office automation on top management communication // Proc. of the June 1st conference on National computer conference and exposition on – AFIPS, 611–616. https://en.wikipedia.org/wiki/Digital_object_identifier. DOI: 10.1145/1499799.1499885.
Card., Stuart K., Thomas P., Moran, Allen N. (July 1980). The keystroke-level model for user performance time with interactive systems // Communications of the ACM, 23 (7), 396–410. https://en.wikipedia.org/wiki/Digital_ object_iden¬tifier. DOI: 10.1145/358886.358895.
Horvitz E., Breese., Jack., Heckerman., et al. (July 1998).The Lumiere Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users // Proc. of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, WI, San Francisco, 256-65.
Stephanidis C. et al. (1998). Adaptable and adaptive user interfaces for disabled users in the AVANTI project // Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1430(1),153-166. URL: https://doi.org/10.1007/ BFb0056962. Johanson, B., Fox A. (2002). The Event Heap: A Coordination Infrastructure for Interactive Workspaces // Proc. of the 4th IEEE Workshop on Mobile Computing Systems and Applications (WMCSA).