A Review of Existing and Promising Applications of Artificial Intelligence Technologies in Development and Operation of Active Phased Antenna Array Systems

Authors

  • A. A. Zhilenkov
  • S. G. Chernyi

DOI:

https://doi.org/10.22213/2410-9304-2019-4-94-99

Keywords:

phased, array, artificial intelligence, model, antenna, machine learning

Abstract

The methods used in the synthesis of antenna arrays vary from complex analytical methods to iterative numerical ones that are based on optimization algorithms. The disadvantage of these methods is that they usually take into account the array factor, rather than the mutual influence of its elements and problems observed realtime. 

This simplification leads to the error in the resulting radiation pattern. Therefore, to improve the accuracy of calculations and models, it is necessary to take into account the physical relationships between parameters of the phased array and the corresponding radiation patterns.

The action of the antenna array is not linear by its nature; this leads to high complexity for modeling and it is usually not taken into account.

Simulation based on artificial neural networks can eliminate the pointed difficulties by approximating the relationships between the desired radiation patterns and the power parameters of the elements of the array, the voltage of the elements and the distance between them in a real antenna array.

Application of neural networks can help transform an antenna array into an intelligent array. This paper considers several neural networks for the synthesis of intelligent antenna arrays and the intelligent synthesis of active phased  antenna arrays.

References

Базулин Е. Г. Сравнение систем для ультразвукового неразрушающего контроля, использующих антенные решетки или фазированные антенные решетки // Дефектоскопия. 2013. № 7. С. 51–75.

Мазный А. Г. Диагностика и калибровка многоэлементной фазированной антенной решетки // Гагаринские чтения – 2019 : сборник тезисов докладов XLV Международной молодежной научной конференции. Московский авиационный институт (национальный исследовательский университет). Москва, 2019. С. 494.

Легкий Н. М., Унченко И. В. Формирование диаграммы направленности в фазированных антенных решетках // Российский технологический журнал. 2019. Т. 7. № 2 (28). С. 29–38.

Андреев В. Ф. Активная фазированная антенная решетка : патент на полезную модель RUS 91653 22.10.2009.

Chryssomallis M. Smart antennas // IEEE Antenna Propagation Mag 2000. pр. 129-36.

Zhang Jian-Wu. The adaptive algorithms of the smart antenna system in future mobile telecommunication systems // IEEE Int Workshop Antenna Technol, 2005. Рp. 347-50.

Lehne P.H., Pettersen M., Telenor A. An overview of smart antenna technology for mobile communications systems // IEEE Commun Surv, 1999.

Christodoulou C., Georgiopoulos M. Applications of neural networks in electromagnetics // Boston: Artech House Inc.; 2001.

Janaswamy Ramakrishna. Radio wave propagation and smart antennas for wireless communications // Kluwer Aca-demic, 2002.

Al-Bajari M, Ahmed JM, Ayoob MB. Performance evaluation of an artificial neural network-based adaptive antenna array system // Lecture Notes Comput Sci 2010, 2. Рp. 11-20.

Yeo BK, Lu Y. Array failure correction with a genetic algorithm // IEEE Trans Antenna Propagation 1999.47. Рp. 823-8.

Rodriguez J.A., Fernandez-Delgado M., Bregains J. A comparison among several techniques for finding defective elements in antenna array // EUCAP the second European conference on antenna and propagation. 2007. Рp. 1-8.

Patnaik A, Choudhury B, Pradhan P, Mishra RK, Christodoulou C. An ANN application for fault finding in antenna arrays // IEEE Trans Antenna Propagation 2007. 55. Pр. 775-7.

Haykins S. Neural networks: A comprehensive foundation. New York: IEEE Press/IEEE Computer Society Press, 1994.

Rafael G., Las Heras Fernando, Luis F Herrán. Neural modelling of mutual coupling for antenna array synthesis // IEEE Trans Antenna Propagation, 2007. 55. Рp. 832-40.

Yeo BK, Lu Y. Array failure correction with a genetic algorithm // IEEE Trans Antenna Propagation 1999.47. Рp. 823-8.

Al-Bajari M, Ahmed JM, Ayoob MB. Performance evaluation of an artificial neural network-based adaptive antenna array system // Lecture Notes Comput Sci 2010, 2. Рp. 11-20.

Haykins S. Neural networks: A comprehensive foundation. New York: IEEE Press/IEEE Computer Society Press, 1994.

Ibid.

Rafael G., Las Heras Fernando, Luis F Herrán. Neural modelling of mutual coupling for antenna array synthesis // IEEE Trans Antenna Propagation, 2007. 55. Рp. 832-40.

Published

12.01.2020

How to Cite

Zhilenkov А. А., & Chernyi С. Г. (2020). A Review of Existing and Promising Applications of Artificial Intelligence Technologies in Development and Operation of Active Phased Antenna Array Systems. Intellekt. Sist. Proizv., 17(4), 94–99. https://doi.org/10.22213/2410-9304-2019-4-94-99

Issue

Section

Articles