The Model of Data Aggregation from Clustered Devices in the Internet of Things
DOI:
https://doi.org/10.22213/2410-9304-2019-4-156-162Keywords:
mobile agent, data aggregation, Internet of things, Markov decision process, cluster analysisAbstract
Modern manufacturing systems can contain a lot of elements and links between them. For effective operation of the system it is necessary to rapidly aggregate and process the information of its elements. The paper is aimed at the description of the model of data aggregation from the clustered devices in the Internet of things. The number of the devices influences the complexity of the system operation organization. The data aggregation scheme should be based on the strategy of formation of the information transfer routes. The paper describes the possibility of using mobile agents for data aggregation. The optimization of the agents’ routes between the nodes of the Internet of things comes down to developing the Hamiltonian cycle (closed with the start in a particular point) with minimum losses for passing it (time, distance, etc.). To simplify the task it is proposed to clusterize the nodes inside the system. In the event of the necessity to optimize the routes of mobile agents the function is determined in which such parameters as the distance between the system nodes, importance of the aggregated data, nodes energy, etc., are taken into account. At the same time, with the help of equalization coefficients that are set up expertly, it is possible to influence the process of the route planning for mobile agents in the system of the Internet of things taking into consideration the required balance between the indexes of the system productivity. The proposed problem setting allows for using Markov decision process to solve it.
References
Wildemann H. (2018). Produktivität durch Industrie 4.0. München: TCW Transfer-Centrum GmbH.
Развитие транспортно-логистических отраслей европейского союза: открытый BIM, интернет вещей и кибер-физические системы / В. П. Куприяновский и др. // Interna-tional Journal of Open Information Technologies. 2018. Т. 6 № 2. С. 54–100.
Файзуллин Р. В., Херинг Ш. Тенденции внедрения концепции «интернет вещей» для автоматизации производства // Социально-экономическое управление: теория и практика. 2018. № 4 (35). С. 154–157.
Файзуллин Р. В., Херинг Ш. Прогнозирование структурных сдвигов на основе самоорганизующихся карт Кохонена // Искусственный интеллект в решении актуальных социальных и экономических проблем ХХI века. Пермский государственный национальный исследовательский университет. 2019. С. 173–178.
Интернет вещей в сельском хозяйстве (Agriculture-IoT / AIoT): мировой опыт, кейсы применения и экономический эффект от внедрения в РФ // Аналитический отчет. J'son&PartnersConsulting, 2017 [Электронный ресурс]. URL: http://json.tv/ict.
Умные города: модели, инструменты, рэнкинги и стандарты / В. И. Дрожжинов и др. // International Journal of Open Information Technologies. 2017. Т. 5. №. 3.
Runder J. Interrogation of Patient Smartphone Activity Tracker to Assist Arrhythmia Management / J. Runder [et al.] // Annals of Emergency Medicine. An international journal. 2016. Vol. 68. Iss. 3. P. 292-294.
S. Pourroostaei Ardakani, J. Padget, and M. De Vos, “CBA: A Cluster-Based Client/Server Data Aggregation Routing Protocol”, Ad Hoc Networks, vol. 50, pp. 68–87, Nov. 2016.
G. P. Gupta, M. Misra, and K. Garg, “Towards Scalable And LoadBalanced Mobile Agents-Based Data Aggregation For Wireless Sensor Networks”, Computers & Electrical Engi-neering, vol. 64, pp. 262–276, Nov. 2017.
P. Patil and U. Kulkarni, “Analysis of Data Aggregation Techniques in Wireless Sensor Networks”, Int. J. of Computational Engineering & Management, vol. 16, pp. 22–27, 2013.
C. Konstantopoulos, A. Mpitziopoulos, D. Gavalas, and G. Pantziou, “Effective Determination of Mobile Agent Itineraries for Data Aggregation on Sensor Networks”, IEEE Trans. on Knowledge and Data Engineering, vol. 22, pp. 1679–1693, Dec. 2010.
S. Sasirekha and S. Swamynathan, “Cluster-Chain Mobile Agent Routing Algorithm for Efficient Data Aggregation in Wireless Sensor Network,” J. of Communications and Net-works, vol. 19, pp. 392–401, 2017.
X. J. L. Gan, J. Liu, “Agent-Based, Energy Efficient Routing In Sensor Networks”. in Proc. 3rd Int. Conf. on Autonomous Agents and Multi agent Sys. (AAMAS’04), 2004, pp. 472– 479.
S. Hussain, A. W. Matin, and S. Hussain, “Base Station Assisted Hierarchical Cluster-Based Routing”, in Int. Conf. on. Wireless and Mobile Communications, 2006.
W.-H. Liao, Y. Kao, and C.-M. Fan, “Data Aggregation In Wireless Sensor Networks Using Ant Colony Algorithm”, J. of Network and Computer App., vol. 31, pp. 387–401, Nov. 2008.
S. S. Dimple Juneja, Kavita Gupta, “Exploiting Mobility of Agents for Data Sharing and Aggregation in a Clustered Mobile Wireless Sensor Networks”, J. of Network Communications and Emerging Technologies, 2015.
M. El Fissaoui, A. Beni-Hssane, and M. Saadi, “Energy Efficient And Fault Tolerant Distributed Algorithm For Data Aggregation In Wireless Sensor Networks”, J. of Ambient Intelligence and Humanized Computing, 2018.
M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley & Son, 2014.
M. Bendjima and M. Feham, “Multi-Agent System For A Reliable Routing In WSN”, in Science And Information Conf. (SAI), 2015, pp. 1412–1419.
M. Kamarei, A. Patooghy, Z. Shahsavari, and M. Javad Salehi, “Lifetime Expansion in WSNs Using Mobile Data Collector: A Learning Automata Approach”, J. of King Saud University - Computer and Information Sciences, 2018.
Свами М., Тхуласираман К. Графы, сети и алгоритмы. М. : Мир, 1984. С. 55.
J. Kaur and G. Kaur, “An Amended Ant Colony Optimization Based Approach For Optimal Route Path Discovery In Wireless Sensor Network,” in IEEE Int. Conf. on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), 2017, pp. 353–357.
M. Salmani, F. Derakhshan, and M. Parandeh, “An Efficient-Energy Data Gathering Method in Wireless Sensor Networks (EEDGM),” International Journal of Next-Generation Computing, vol. 8, 2017.
Yousefi, S., Derakhshan, F., & Bokani, A. (2018). Mobile Agents for Route Planning in Internet of Things Using Markov Decision Process. 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE).