Laser Locator for Detection and Recognition of Small Objects
DOI:
https://doi.org/10.22213/2410-9304-2020-1-9-14Keywords:
laser locator, scanning device, distance of range-finding, laser source, recognition of objects, detection of objectsAbstract
There is a problem of quick detecting of small-sized air objects in addition to searching for a large aircraft such as airplanes or helicopters in design of modern locators, this problem forces the developers of these systems to use laser sources for ranging of air space. The objective of work is to study the possibility of using laser sources for the ranging of small-sized objects, and also to study the requirements for laser locators and of the problems associated with the changing of the radio spectral range to the optical one. The problem of detecting small-sized airborne objects and the issue of constructing laser locators of all-round range-finding are considered in the paper. Methods for range-finding to objects and measuring of their angular coordinates, which are used in these systems, are described. The estimated composition of the designed system is given and main functions of its parts and interactions between these parts are noted. The estimate of the required laser radiation power and the dependence of the number of laser sources in the system on the maximum range-finding distance are presented. A method for solving this problem by dividing the system into a block for determining angular coordinates and a block for determining range is proposed.References
Zubiaga C.J., Belcour L., Bosch C., Muñoz A., Barla P. Statistical analysis of bidirectional reflectance distribution functions // Proceedings of SPIE - The International Society for Optical Engineering. 2015. V. 9398. P. 939808 (14). DOI 10.1117/12.2083007.
Zhang H., Wang B. Three-dimensional laser radar range imagery of complex target with rough surfaces // Progress In Electromagnetics Research M. 2018. V. 73, P. 17-24. DOI 10.2528/PIERM18050902.
Li D., Xu L., Xie X., Li X., Chen J., Chen J. Co-path full-waveform LiDAR for detection of multiple along-path objects // Optics and Lasers in Engineering. 2018. V. 111. P. 211-221. DOI 10.1016/
j.optlaseng.2018.08.009.
Carrea D., Abellan A., Humair F., Matasci B., Derron M.-H., Jaboyedoff M. Correction of terrestrial LiDAR intensity channel using Oren–Nayar reflectance model: An application to lithological differentiation // Journal of Photogrammetry and Remote Sensing. 2016. V. 113. P. 17-29. DOI 10.1016/j.isprsjprs.2015.12.004.
Сверхбыстрое сканирование пространства импульсным чирпированным лазерным излучением / В. А. Малинов, Н. И. Павлов, А. В. Чарухчев // Оптический журнал. 2019. Т. 86, № 8. С. 83-89. DOI 10.17586/1023-5086-2019-86-08-83-89.
Васильев В. П. Современное состояние высокоточной лазерной дальнометрии // Успехи физических наук. 2018. Т. 188, № 7. С. 790–797. DOI 10.3367/UFNr.2017.04.038147.
Germer T.A. Full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function of sintered polytetrafluoroethylene // Applied Optics. 2017. V. 56, № 33. P. 9333-9340. DOI 10.1364/
AO.56.009333.
Wang K., Zhu J.-P., Liu H., Hou X. Model of bidirectional reflectance distribution function for metallic materials // Chinese Physics B. 2016. V. 25. № 9. P. 094201. DOI 10.1088/1674-1056/25/9/094201.
Yang M., Xu W., Li J., Zhou Z., Lu Y. A modified version of BRDF model based on Kubelka-Munk theory for coating materials // Optik. 2019. V. 193. P. 162982. DOI 10.1016/j.ijleo.2019.162982.
Chen L., Ren Z., Ma C., Chen G. Modeling and simulating the bidirectional reflectance distribution function (BRDF) of seawater polluted by oil emulsion // Optik. 2017. V. 140. P. 878-886. DOI 10.1016/
j.ijleo.2017.05.022.
Лабунец Л. В., Борзов А. Б., Ахметов И. М. Регуляризованная параметрическая модель индикатрисы коэффициента яркости шероховатой поверхности // Оптический журнал. 2019. Т. 86, № 10. С. 20–29. DOI 10.17586/1023-5086-2019-86-10-20-29.
Медведев Е. М., Данилин И. М., Мельников С. Р. Лазерная локация земли и леса : учеб. пособие. М. : Геолидар, Геокосмос, 2007. 230 с.
Козинцев В. И., Белов М. Л., Орлов В. М. Основы импульсной лазерной локации. М. : Изд-во МГТУ им. Н. Э. Баумана, 2010. 571 с.
Военные применения лазеров: учебное пособие / В. А. Борейшо, Д. В. Клочков, М. А. Коняев, Е. Н. Никулин. СПб. : Балт. гос. тех. ун-т, 2015. 103 с.
Мусьяков М. П., Миценко И. Д., Ванеев Г. Г. Проблемы ближней лазерной локации. М. : Изд-во МГТУ им. Н. Э. Баумана, 2000. 296 с.
Харкевич А. А. Спектры и анализ. М.: URSS: ЛКИ, 2009. 240 с.
Высокопроизводительный метод измерений координат объектов в условиях космического пространства / Н. А. Грязнов, С. М. Панталеев, А. Е. Иванов, Д. А. Кочкарев, Д. С. Куликов // Научно-технические ведомости СПбПУ. 2013. Т. 2. С. 197–202.
Карасик В. Е., Орлов В. М. Локационные лазерные системы видения. М. : Изд-во МГТУ им. Н. Э. Баумана, 2013. 478 с.