Simulation Modeling of the Process of Functioning of a Technical Cell with Non-Depreciating Failures

Authors

  • V. Y. Kopp
  • M. V. Zamorenov
  • N. I. Chalenkov

DOI:

https://doi.org/10.22213/2410-9304-2020-1-57-64

Keywords:

simulation model, semi-Markov system, technological cell, state phase space, AnyLogic

Abstract

The paper describes the method of phase enlargement of semi-Markov systems that does not require the determination of the stationary distribution of the embedded Markov chain. Phase enlargement is the equivalent replacement of a semi-Markov system with a common phase state space, a system with a discrete state space that has the same characteristics as the original system.  A lemma on the distribution function of the difference of random variables is presented. Based on the lemma, the application of the formula for the difference of a random variable and a difficult recovery process is described. A method of phase enlargement of regenerating and non-regenerating semi-Markov systems is proposed, which does not include the stage of determining the stationary distribution of the embedded Markov chain for systems with a common phase space.  Based on the method of phase enlargement of semi-Markov systems proposed by the authors, the operation of a technological cell with non-depreciating failures is considered.  A mathematical description of the system and the simulation results by the proposed method and using simulation are given.  During simulation, the time between failures and restoration of the technological cell, as well as the processing time of the product are taken into account.  In the AnyLogic environment, simulation models are built in two ways: based on the time diagram of the functioning of the technological cell, as well as on the basis of a time diagram with a graph of cell states. The results of simulation are compared with the method developed by the authors for modeling semi-Markov systems that do not require determining the stationary distribution of the embedded Markov chain for systems with a common phase state space. Comparison of simulation results confirmed the correctness of the construction of the semi-Markov model.

References

Королюк В. С. Стохастические модели систем / отв. ред. А. Ф. Турбин. Киев : Наук. думка, 1989. 208 с.

Ushakov, I. A. Probabilistic Reliability Models (Wiley, 2012).

Korolyuk V. S., Limnios N., Stochastic Systems in Merging Phase Space (World Scientific, Imperial Coledge Press, 2005).

Королюк В. С., Турбин А. Ф. Фазовое укрупнение сложных систем. К. : Вища школа, 1978. 112 с.

Handbook of Stochastic Models and Analysis of Manufacturing System Operations / MacGregor Smith J., Tan B. (Eds.) // Springer-Verlag New York, 2013.

Curry G.L., Feldman R.M., Manufacturing Systems Modeling and Analysis, 2nd Edition (Springer-Verlag Berlin Heidelberg, 2011), p. 338.

Limnios N., Oprisan G., Semi-Markov Processes and Reliability (Springer Science+Business Media, New York, 2001).

Silvestrov D., Silvestrov S., Nonlinearly Perturbed Semi-Markov Processes (Springer, Cham, 2017), p. 143.

Байхельт Ф., Франкен П. Надежность и техническое обслуживание. Математический подход / пер. с нем. М. : Радио и связь, 1988. 392 с.

Kopp V. Ja. The numerical method of the phase integration of nonregenerating semi-Markov systems / V.Ja. Kopp, M.V. Zamoryonov, N.I. Chalenkov. // Transaction of Azerbaijan National Academy of Sciences, Series of Physical-Technical and Mathematical Sciences: Informatics and Control Problems, Vol. XXXVIII, No.6, 2018 www.isi.az/journal/2018/6-00.pdf

Копп В. Я., Заморёнов М. В., Чаленков Н. И. Фазовое укрупнение полумарковской системы, состоящей из двух последовательно соединенных технологических ячеек // Автоматизация и измерения в машиноприборостроении. 2018. Т. 4. С. 56–66.

Simulation of a single-component system using the trajectories method taking into account the scheduling preventive maintenance / M.V. Zamoryonov, V.Ya. Kopp, O.V. Chengar, Yu.L. Rapatskiy // Cybernetics and Mathematics Applications in Intelligent Systems Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC2017). 2017. Vol 2. Pp. 264-271.

Копп В. Я., Заморёнов М. В., Чаленков Н. И. Разновидность фазового укрупнения полумарковских систем на примере моделирования синхронной автоматизированной линии // Интеллектуальные системы в производстве. 2018. Т. 16. № 3. С. 97–102.

Моделирование процесса функционирования обслуживающего устройства с необесценивающими отказами методом путей. / М. В. Заморёнов,

В. Я. Копп, Д. В. Заморёнова, А. А. Скидан // Известия Тульского государственного университета. Технические науки. Вып. 7: в 2 ч. Ч. 1. Тула : Изд-во ТулГУ, 2016. С. 71–82.

Копп В. Я., Заморёнов М. В., Чаленков Н. И. Фазовое укрупнение полумарковской системы, состоящей из двух последовательно соединенных технологических ячеек // Автоматизация и измерения в машиноприборостроении. 2018. Т. 4. С. 56–66.

Zamoryonov, M.V. Simulation of a single-component system using the trajectories method taking into account the scheduling preventive maintenance / M.V. Zamoryonov, V.Ya. Kopp, O.V. Chengar, Yu.L. Rapatskiy // Cybernetics and Mathematics Applications in Intelligent Systems Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC2017), Vol 2 / Springer International Publishing Switzerland 2017. – P. 264-271.

Kopp V. Ja. The numerical method of the phase integration of nonregenerating semi-Markov systems / V.Ja. Kopp, M.V. Zamoryonov, N.I. Chalenkov. // Transaction of Azerbaijan National Academy of Sciences, Series of Physical-Technical and Mathematical Sciences: Informatics and Control Problems, Vol. XXXVIII, No.6, 2018 www.isi.az/journal/2018/6-00.pdf

Published

18.06.2020

How to Cite

Kopp В. Я., Zamorenov М. В., & Chalenkov Н. И. (2020). Simulation Modeling of the Process of Functioning of a Technical Cell with Non-Depreciating Failures. Intellekt. Sist. Proizv., 18(1), 57–64. https://doi.org/10.22213/2410-9304-2020-1-57-64

Issue

Section

Articles