Approbation оf the Method for Stiffness Parameters Identification of Spatial Structures on Experimental Stands

Authors

  • A. M. Belostotsky CJSC "Research Center "StaDiO", Moscow
  • P. I. Novikov "Center SMIS "BASIS Ltd", Moscow
  • A. A. Bakh Altay-Sayan Branch of Federal Research Center "United Geophysical Survey RAS", Novosibirs
  • A. A. Krasnikov "Geonavigation technologies Ltd", Tyumen

DOI:

https://doi.org/10.22213/2410-9304-2020-2-44-60

Keywords:

damage detection, experiment, dynamic characteristics, finite element model, standing wave method

Abstract

Mathematically formalized technique for stiffness parameters identification of spatial structures has been tested on two physical experimental models, "Constructor" and "Etazherka". The specific feature of the stand "Constructor" is the sensitivity of natural frequencies and mode shapes of a significant spectrum part to the inflicted damage. The specific feature of the stand "Etazherka" is the indifference of a significant spectrum part to the inflicted damage. Identification of stiffness parameters and defects of various stand states is performed.

An algorithm for selecting priority minimization components is proposed. The algorithm provides correct identification of stiffness parameters under conditions of significant "contrast" change of a significant spectrum part. The algorithm also significantly increases the computational efficiency of the equivalent minimization problem. For a detailed study of resonance characteristics, the method of standing waves in the digitized version was used. The correct results of approbation of the technique for the stand "Constructor" were received. For the stand "Etazherka" the influence of errors and noise leads to localization errors by the height of the damaged "column". Damage localization errors can be overcome by improving the accuracy of mode shapes components or by investigating higher system frequencies and mode shapes. As a whole, results of approbation show that the technique is applicable for research of spatial structural schemes and can be demanded as a component of information, analytical and mathematical models of digital twins as a part of modern dynamic monitoring systems.

References

Ватульян А. О. Коэффициентные обратные задачи механики. М. : Физматлит, 2019. 272 с.

Hansen P. C. Analysis of discrete illposed problems by means of the L-curve // SIAM Review. 1992. No. 34. Pр. 561-580.

Bui H.D. Fracture Mechanics. Inverse Problems and Solutions. Springer, 2006. 375 p.

Chen B., Nagarajaiah S. Flexibility-based structural damage identification using Gauss–Newton method // Sadhana. 2013. Vol. 38, no. 4. Pp. 557-569.

Kang J. S., Yeo I. H., Lee H. S., Shin S. B. Structural damage detection using modal data with regularization technique // 15th International Conference on Structural Mechanics in Reactor Technology Post-Conference (Post-smirt15). Cheju, South Korea: 1999.

Farrar C. R., Cone K. M. Vibration testing of the I-40 bridge before and after the introduction of damage // Proc. 13th Int. Modal Anal. Conf. 1995. Pp. 203-209.

Zimmerman D. C., Kaouk M. Eigenstructure assignment approach for structural damage detection // AIAA. 1992. No. 30 (7). Pp. 1848-1855.

Marwala T. Finite element model updating using computational intelligence techniques. London: Springer, 2010. 250 p.

Shabbir F., Khan M. I., Naveed A., Tahir M. F., Ejaz N., Hussain J. Structural Damage Detection with Different Objective Functions in Noisy Conditions Using an Evolutionary Algorithm // Applied Sciences. 2017. Vol. 7, Iss. 12. Pp. 2076-3417.

Entezami А., Shariatmadar H. Damage detection in structural systems by improved sensitivity of modal strain energy and Tikhonov regularization method // International Journal of Dynamics and Control. 2014. No. 2. Pp. 509-520.

Villalba-Morales J.D., Laier J. E. Assessing the performance of a differential evolution algorithm in structural damage detection by varying the objective function // DYNA. 2014. Vol. 81, Iss. 188. Pp. 106-115.

Alkayem N.F., Cao M., Zhang Y., Bayat M., Su Zh. Structural damage detection using finite element model updating with evolutionary algorithms a survey // Neural Computing and Applications. 2018. No. 30. Pp. 389-411.

Методика уточнения конечно-элементной модели механической системы с помощью анализа чувствительности [Электронный ресурс] / С. М. Николаев, И. А. Киселёв, В. А. Жулёв, П. С. Воронов // Наука и образование. МГТУ им. Н.Э. Баумана : электрон. журн. 2014. № 1. C. 128–136. URL: http://engineering-science.ru/file/ out/755815 (accessed 10.06.2020). DOI: 10.7463/ 1214.0751548.

Забелин А. В., Пыхалов А. А. Валидация конечно-элементных моделей и алгоритм ее реализации // Вестник Пермского национального исследовательского политехнического университета. Механика. 2017. № 3. C. 216–233. DOI: 10.15593/perm.mech/2017.3.13.

Friswell M. I., Mottershead J. E. Finite element model updating in structural dynamics. Netherlands: Kluwer Academic Publishers, 1995. 304 p.

Weber B., Paultre P., Proulx J. Damage Detection of an Aluminum Truss Using Tikhonov Regularization // Conference & Exposition on Structural Dynamics (IMAC-XXIV). St. Louis, Missouri, United States: 2006.

Новиков П. И. Численно-аналитическая методика идентификации параметров жесткости пространственных конструкций на основе минимизации различия расчетных (конечноэлементных) и натурных динамических характеристик // Интеллектуальные системы в производстве. 2020. Т. 18. № 3. С. 64–71. DOI: 10.22213/2410-9304-2020-3-64-71.

Кухта А. В. Экспериментальные стенды «Конструктор», «Плита» и «Створ» научно-образовательного центра мониторинга МГСУ // Предотвращение аварий зданий и сооружений : электрон. журн. 2013. №1. С. 46-59. URL: http://www.pamag.ru/src/designer-plate_target/ designer-plate_target.pdf (accessed 10.06.2020).

Адаптируемые конечноэлементные модели в основе динамического мониторинга несущих конструкций высотных зданий. Часть 2. Верификация методики на стендовых моделях / А. М. Белостоцкий, Д. К. Каличава, А. И. Нагибович, Н. О. Петряшев, С. О. Петряшев // Int. Jour. for Computational Civil and Structural Engineering. 2012. Vol. 8, Iss. 4. С. 28–42.

Каличава Д. К. Адаптивные динамические конечноэлементные модели в основе мониторинга несущих конструкций высотных зданий : дис. ... канд. техн. наук: 05.13.18. М., 2012. 149 с.

Еманов А. Ф. Восстановление когерентных составляющих волновых полей в сейсмике: дис. ... д-ра техн. наук: 25.00.10. Новосибирск, 2004. 279 с.

Published

13.11.2020

How to Cite

Belostotsky А. М., Novikov П. И., Bakh А. А., & Krasnikov А. А. (2020). Approbation оf the Method for Stiffness Parameters Identification of Spatial Structures on Experimental Stands. Intellekt. Sist. Proizv., 18(2), 44–60. https://doi.org/10.22213/2410-9304-2020-2-44-60

Issue

Section

Articles