Application of Eddy Current Control in the Temperature Control Loop of the 3D Printing Process

Authors

  • A. A. Oskolkov Perm National Research Polytechnic University, Perm
  • I. I. Bezukladnikov Perm National Research Polytechnic University, Perm
  • D. N. Trushnikov Perm National Research Polytechnic University, Perm

DOI:

https://doi.org/10.22213/2410-9304-2020-3-110-117

Keywords:

FFF, FDM, 3D-printing, induction heating, eddy-current testing, control loop, temperature adjustment, PID, simulation model, transfer function

Abstract

The paper is devoted to FDM 3D manufacturing. Most of the FDM 3D printers on the market use an indirect resistive nozzle heating method and standard thermoelectric temperature control methods, which leads to a high thermal inertia of the heating system and the inability to provide a sufficient speed and accuracy of temperature control. The inability to control the temperature of the nozzle during the printing process leads to inconsistent quality of layer-to-layer adhesion and on the larger scale - heterogeneity of the material inside the whole printed object. To mitigate and/or resolve these problems, an induction heating system of the nozzle with a minimum thermal mass is proposed. At the same time, a resonant (eddy current) method is proposed to control the temperature of the nozzle. High system power and low weight nozzle required the development of a new rapid control system.

A simulation model of the nozzle temperature control loop was created in the MatLab Simulink. The transfer functions of the induction heating system and the feedback circuit are determined.

The coefficients of the PID controller and its sampling period were determined. A zero static error and overshoot value of 1% eliminate overheating of the material during extrusion. The time for the system to reach the steady state is 1 s., that meets the requirements for rapid heating and cooling of the nozzle during the printing process.

The testbed system was created consisting of the ultra-low weight induction heated nozzle, a power source, a high-frequency oscillator, an inductor coil, a measuring coil, a unit for recording and processing a measuring signal. Experimental data for all stages of the conducted research is provided.

References

ASTM F2792-12A, Standard Terminology for Additive Manufacturing Technologies. ASTM International, West Conshohocken, PA, 2012.

Srinivasulu Reddy K., Dufera S. Additive manufacturing technologies // International Journal of Management, Information Technology and Engineering (BEST: IJMITE) ISSN (P): 2348-0513, ISSN (E): 2454-471X, Vol. 4, Issue 7, Jul 2016, 89-112.

Tan W.S. Application of induction heating to 3D print low melting point metal alloy: Final Project Summary Report 2015, UNSW@ADFA. 2015, pp. 1-13.

Bauer U., Bandiera N.G., Sachs E.M. Induction heating systems and techniques for fused filament metal fabrication: Patent 0118252 USA. 2019.

Pilavdzie J.I., Buren S.V., Kagan V.G. Apparatus for inductive and resistive heating of an object: Patent 7041944 USA. 2006.

Hemang J., Manish A. Induction Heating Based 3D Metal Printing of Eutectic Alloy Using Vibrating Nozzle // Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping. 2020, pp. 71-80.

Elserman M., Versteegh J.A., Zalm E. Inductive nozzle heating assembly: Patent 0094726 USA. 2017.

Van Pelt W. Method and printer head for 3D printing of glass: Patent 3042751 Europe. 2016.

Stirling R.L., Chilson L., English A. Inductively heated extruder heater: Patent 9596720 USA. 2017.

Индукционный нагрев сегментированной токопроводящей жилы силового кабеля на этапе его изготовлении / А. К. Шидловский [и др.] // Техническая электродинамика. 2009. № 1. С. 53–60.

Магнитные свойства вещества. М. : Московский физико-технический институт, 2007. 29 с.

Bolat D.E. Implementation of Matlab-SIMULINK based real time temperature control for set point changes [J]. International Journal of Circuits, Systems and Signal Processing, 2007, 1(1): 54–61.

Федин М. А. Выбор принципа регулирования и разработка системы управления индукционных тигельных печей с проводящим тиглем // Актуальные проблемы энергосберегающих электротехнологий АПЭЭТ-2014 : сборник научных трудов. Екатеринбург : [УрФУ], 2014. С. 135–140.

Митяков Ф. Е., Горячих Е. В. Системы управления печей сопротивления с нагревателями из тугоплавких металлов // Актуальные проблемы энергосберегающих электротехнологий АПЭЭТ-2014 : сборник научных трудов. Екатеринбург : [УрФУ], 2014. С. 88–93.

Цифровой термометр [Электронный источник]. URL: https://www.uni-trend.com/html/product/

Environmental/Environmental_Tester/UT320_Contact_

Type/UT325.html (дата обращения: 23.05.2018).

Published

17.11.2020

How to Cite

Oskolkov А. А., Bezukladnikov И. И., & Trushnikov Д. Н. (2020). Application of Eddy Current Control in the Temperature Control Loop of the 3D Printing Process. Intellekt. Sist. Proizv., 18(3), 110–117. https://doi.org/10.22213/2410-9304-2020-3-110-117

Issue

Section

Articles