Numerical Simulation of the Working Process in a Safety Valve with Additional Gas-Dynamic Coupling

Authors

  • T. Raeder Kalashnikov ISTU, Izhevsk
  • V. A. Tenenev Kalashnikov ISTU, Izhevsk
  • M. R. Koroleva Kalashnikov ISTU, Izhevsk

DOI:

https://doi.org/10.22213/2410-9304-2020-3-118-126

Keywords:

safety valve, gas-dynamic coupling, viscous gas, narrow gaps, numerical modeling, Godunov scheme

Abstract

Gas dynamic processes in the spring-type safety valve with the additional gas-dynamic coupling between the valve volume and the environment are investigated. When the valve is opening gas flows from the vessel, it is accompanied by filling the operating volume with rising the pressure over the disk. It leads to appearing the opposed force and unstable disk movement. Decreasing this pressure will allow for providing the stable valve operation. The additional gas-dynamic coupling can help to stabilize the valve operation because a part of the gas is discharged through narrow gaps and the disk pressure decreases. The gaps may take the form of cylindrical or coaxial channels. Gas flows into such channels are two-dimensional. The reduction of the computation load for numerical calculation of the spatial problem of safety valve operation can pass on to a simplified task for gas flows through gaps. In this work the possibility of using 1D task statement for finding gas characteristics in narrow channels is estimated.

The algorithm with preliminary calculations of gas parameters in connecting channels based on one-dimensional differential equations of viscous gas flow in narrow gaps is proposed. This algorithm allowed us to determine the relationship between the valve specific force and the disk lift when two cylindrical channels are used to reduce the pressure over the disk. It was shown that the additional gas-dynamic coupling provides a stable operating mode of the safety valve, while the absence of gas discharge can lead to the unstable oscillating mode of the disk motion.

References

Beune A. Analysis of high-pressure safety valves Eindhoven: Technische Universiteit Eindhoven. 2009. p.134. DOI: 10.6100/IR652510.

Song X.G., Wang L.T., Park Y.C., Sun W. A Fluid-Structure Interaction Analysis of the Spring-Loaded Pressure Safety Valve during Popping Off // 14th International Conference on Pressure Vessel Technology. Procedia Engineering, 130 (2015), pp. 87-94. DOI: 10.1016/j.proeng.2015.12.178

Hos C.J., Champneys A.R., Paulc K., McNeelyc M. Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms Journal of Loss Prevention in the Process Industries, 31, (2014), рр. 70-81.

Hos C.J., Champneys A.R., Paul K., McNeely M. (2016). Dynamic behaviour of direct spring loaded pressure relief valves: III valves in liquid service. Journal of Loss Prevention in the Process Industries, 43, 1-9. DOI: 10.1016/j.jlp.2016.03.030

Dimitrov S., Komitovski M. Static and Dynamic Characteristics of Direct Operated Pressure Relief Valves; Machine Design, Vol. 5 (2013). No. 2. ISSN 1821-1259; pp. 83-86.

Коркодинов Я. А. Обзор семейства k–ε-моделей для моделирования турбулентности // Вестник ПНИПУ. Машиностроение, материаловедение. 2013. № 2. URL: https://cyberleninka.ru/article/n/obzor-semeystva-k-modeley-dlya-modelirovaniya-turbulentnosti (дата обращения: 23.04.2020).

Численное решение многомерных задач газовой динамики / С. К. Годунов, А. В. Забродин, М. Я. Иванов, А. Н. Крайко, Г. П. Прокопов. М. : Наука, 1976. 400 c.

Сафронов А. В., Фомин Ю. В. Метод численного решения уравнений газодинамики с помощью соотношения на разрывах // Труды МФТИ, 2010. Т. 2. № 2. С. 137–148.

van Albada G.D., van Leer B., Roberts W.W. Jr. A comparative study of computational methods in cosmic gas dynamics. Astronomy and Astrophysics, vol. 108, no. 1, Apr. 1982, p. 76-84.

Wesseling, Pieter, Dr. Principles of computational fluid dynamics / Pieter Wesseling. p. cm. - (Springer series in computational mathematics, ISSN 0179-3632; 29) Mathematics Subject Classification (1991): 76M, 65M, XII, 644 p.

Численное моделирование процесса срабатывания предохранительного клапана / М. Р. Королева, О. В. Мищенкова, Т. Редер, В. А.Тененев, А. А. Чернова // Компьютерные исследования и моделирование. 2018. Т. 10. № 4. С. 495–509.

Редер Т., Тененев В. А., Паклина Н. В. Исследование влияния величины начального зазора на динамику открывания предохранительного клапана // Интеллектуальные системы в производстве. 2018. Т. 16. № 2. С. 28–40. DOI 10.22213/2410-9304-2018-2-28-40.

Published

17.11.2020

How to Cite

Raeder Т., Tenenev В. А., & Koroleva М. Р. (2020). Numerical Simulation of the Working Process in a Safety Valve with Additional Gas-Dynamic Coupling. Intellekt. Sist. Proizv., 18(3), 118–126. https://doi.org/10.22213/2410-9304-2020-3-118-126

Issue

Section

Articles