Application of Spatial Correlation of Acoustic Emission Signals Parameters to Solve Problems of Sources Clustering

Authors

  • A. A. Popkov Siberian Transport University, Novosibirsk
  • S. A. Bekher Siberian Transport University, Novosibirsk

DOI:

https://doi.org/10.22213/2410-9304-2020-30-38

Keywords:

non-destructive testing, acoustic emission, parameters of acoustic emission signals, informative parameters, source location, correlation, correlation coefficient, clustering sources

Abstract

One of the defining tasks, without which it is impossible to implement non-destructive testing by the method of acoustic emission (AE), is associated with an increase in the reliability of combining sources into clusters and substantiation of a set of informative signal parameters for describing properties of AE sources. The paper proposes a model of signal parameters, registered by several transducers from one AE source and containing random multiplicative and additive uncertainties. As part of the analytical solution of the model, it is shown that the requirements of independence of uncertainties of signal parameters between each other and with source parameters are sufficient to prove the statement that informative parameters of signals at two transducers correlate with the source parameter if and only if they correlate between each other. 

The possibility is substantiated for using the correlation coefficient parameters of signals from two transducers to assess these parameters' degree of information content and their relationship with the source. Results are given for experimental studies of a steel pressure vessel and sheet glass using an electronic simulator, a Su-Nielsen simulator, and real sources under hydraulic and shock loading. A method for signal clustering is proposed and implemented based on processing the dependences of parameters of signals recorded by three transducers. The convergence is shown for the results obtained with the source location in sheet glass based on the classical algorithm for time difference of signal arrival within the standard software AE-system SDSAD-16.03.

References

Муравьев В. В., Муравьева О. В. Оценка роста усталостных трещин в боковых рамах тележек грузовых вагонов акустико-эмиссионным методом // Деформация и разрушение материалов. 2016. № 9. С. 24–29.

The dependence of local deformations and internal stress fields on welding technique for grade vst3sp structural steel: I. The influence of welding technique on the mechanical characteristics and acoustic emission parameters of grade Vst3sp steel/ / Smirnov A.N., Ozhiganov E.A., Danilov V.I., Gorbatenko V.V., Muravev V.V. // Russian Journal of Nondestructive Testing. 2015. Т. 51. № 11. С. 705-712.

Аналитический метод моделирования сигналов акустической эмиссии в тонкостенных объектах / В. А. Барат, Д. А. Терентьев, В. В. Бардаков,

С. В. Елизаров // Контроль. Диагностика. 2020. № 6. С. 23–29.

Evaluation of the danger degree of fatigue cracks in the acoustic emission testing of cast pieces of a freight-car truck / Stepanova L.N., Muravev V.V., Ka-reev A.E. Russian Journal of Nondestructive Testing. 2003. Т. 39. № 1. С. 54-59.

The specific features of acoustic-emission testing of vessel equipment with a wall delamination of a tech-nological origin / Rastegaev I.A., Vinogradov A.Y., Merson D.L., Danyuk A.V., Chugunov A.V. // Russian Journal of Nondestructive Testing. 2015. Т. 51. № 5.

С. 280-291.

Analysis of errors in location of flaws in multipass welds using different clustering methods / Stepanova L.N., Kabanov S.I., Ramazanov I.S., Kanifadin K.V. // Russian Journal of Nondestructive Testing. 2017. Т. 53. № 2. С. 96-103.

Носов В. В., Потапов А. И. Акустико-эмиссионный контроль прочности сложнонагруженных металлоконструкций // Дефектоскопия. 2015.

№ 1. С. 61–72.

Виноградов А. Ю., Мерсон Д. Л. Природа акустической эмиссии при деформационных процессах в металлических материалах // Физика низких температур. 2018. Т. 44. № 9. С. 1186–1195.

Контроль дефектов сварки стальных образцов по оценке энергии кластеров сигналов акустической эмиссии / Л. Н. Степанова, С. И. Кабанов, В. В. Чернова, К. В. Канифадин // Контроль. Диагностика. 2019. № 10. С. 4–11.

Степанова Л. Н., Чернова В. В., Рамазанов И. С. Использование методов кластеризации для обработки акустико-эмиссионной информации // Контроль. Диагностика. 2019. № 8. С. 12–21.

A correlation analysis and invariant method of acoustic-emission signals in the diagnostics of predestruction states of materials / Builo S.I., Orlov S.V. // Russian Journal of Nondestructive Testing. 2014. Т. 50. № 8. С. 464-468.

Буйло С. И. Об информативности метода инвариантов сигналов акустической эмиссии в задачах диагностики предразрушающего состояния материалов // Дефектоскопия. 2018. № 4. С. 18–23.

Bekher S.A. Applying impact loading for revealing cracks in glass by acoustic emission method / S.A. Bekher, A.A. Popkov // Russian Journal of Nondestruc-tive Testing. 2018. Т. 54. № 11. С. 741-747. DOI: 10.1134/S1061830918110025.

Локализация сигналов акустической эмиссии в металлических конструкциях / А. Н. Серьезнов, В. В. Муравьев, Л. Н. Степанова, С. Б. Барабанова,

В. Л. Кожемякин, С. И. Кабанов // Дефектоскопия. 1997. № 10. С. 79–84.

Reconstructing defect radiation amplitude based on acoustic emission signals under conditions of a plane stress state / Berkovich V.N., Builo S.I. // Russian Journal of Nondestructive Testing. 2020. Т. 56. № 4. С. 328-339.

Published

29.12.2020

How to Cite

Popkov А. А., & Bekher С. А. (2020). Application of Spatial Correlation of Acoustic Emission Signals Parameters to Solve Problems of Sources Clustering. Intellekt. Sist. Proizv., 18(4), 30–38. https://doi.org/10.22213/2410-9304-2020-30-38

Issue

Section

Articles