Investigation of a Solenoid as a Source of a Uniform Magnetic Field in Magnetobiological Experiments
DOI:
https://doi.org/10.22213/2410-9304-2020-47-53Keywords:
solenoid, inhomogeneity of magnetic field, magnetobiological experienceAbstract
Magneto biological experiments require generators of constant magnetic fields. Requirements for generators depend on the experimental design and the type of biological object: microorganisms (viruses, bacteria, fungal spores), insects (ants, bees), mammals (rats, mice, birds). The working volume in which the latter are placed can be represented by various forms: Petri dishes, test tubes, boxes (incubators, hives, chambers, etc.).
The shape and size of the working volume together with the experimental plan and the type of biological object impose conditions on the parameters of the generators of magnetic fields, which, when interacting with the Earth's field, create a hypogeomagnetic field in the working volume. Requirements for the technical characteristics of generators of a hypogeomagnetic field also vary within wide limits. Thus, in experiments based on resonance effects, it is necessary to carefully calibrate the magnetic field in the working volume for homogeneity. The field should be especially homogeneous when studying nuclear magnetic resonance (NMR). With an increase in the mass of bioparticles, the resonance frequencies fall, the Q-factor of the vibrating particles of the biosystem decreases, and the requirements for the uniformity of the field become less stringent. Unacceptable deviation of the field from the nominal value leads to the loss of purity of the experiment, complicates the interpretation of the results, and often makes them incorrect.
The preference among magneto biologists was given to generators in the form of various coils with a current: an Ampere coil, a rectangular frame with a current, Helmholtz coils, a solenoid. In this work, we investigated a solenoid as a source of a field with a given uniformity in the working volume of a magneto biological experiment. The field is calculated using well-known formulas and software environment Wolfram Mathmatica 12.1.
The working volume inside the solenoid is determined, in which the field has a given degree of inhomogeneity. The graphs of the dependences of the field inhomogeneity are plotted depending on the ratio of length to radius: "long" ratio is more than 20, "short" (coil) - 20, and a single-turn coil (Ampere coil). Examples of calculating the dimensions of the solenoid of specific magneto biological experiments are given.References
Binhi V.N., Prato F.S. Rotations of macromole-cules affect nonspecific biological responses to magnetic fields // Scientific reports. 2018. T.8. No.1. Pp. 1-11. DOI: 10.1038/s41598-018-31847-y.
Ломаев Г. В., Емельянова М. С. Влияние вариаций магнитного поля земли на эмбриональное развитие G.gallus// Интеллектуальные системы в производстве. 2014. № 1 (23). С. 127–131.
Влияние слабого комбинированного магнитного поля на скорость регенерации планарий Dugesia tigrina / Х. П. Тирас, Л. К. Сребницкая, Е. Н. Ильясова, А. А. Климов, В. В. Леднев // Биофизика. 1996. Т. 41, № 4. С. 826–831.
Белкин А. Д. Содержание белков регуляторов апоптоза bcl-2 и bad в регионарных лимфатических узлах при воздействии магнитного поля 50 Гц // Гигиена и санитария. 2015. Т. 94, № 1. С. 112–114.
Повышение стабильности магнитного поля короткозамкнутого сверхпроводникового соленоида / Д. В. Варюхин, Н. В. Таряник, Д. О. Федюк, В. В. Сухой // Физика и техника высоких давлений. 2018. Т. 28, № 2. С. 121–130.
Федюк Д. О., Варюхин Д. В., Таряник Н. В. Сверхпроводниковая магнитная система с однородным магнитным полем // Физика и техника высоких давлений. 2018. Т. 28, № 3. С. 113–118.
Таряник Н. В., Варюхин Д. В., Федюк Д. О. Коррекция однородного магнитного поля сверхпро-водникового соленоида // Физика и техника высоких давлений. 2019. Т. 29, №3. С. 131–139.
Мубаракшин И. Р. Электромагнитное поле соленоида //Физическое образование в вузах. 2017. Т. 23, № 3. С. 46–53.
Caciagli A., Baars R. J., Philipse A. P., Kuipers Bonny W.M. Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization// Journal of Magnetism and Magnetic Materials. 2018. Vol. 45. Pp. 423–432. DOI:10.1016/j.jmmm.2018.02.003.
Bayazitoglu Y., Sathuvalli U. B. Field Gradient Analysis of a Conical Helix// IEEE Transactions on magnetics. 1993. Vol. 29, №. 1. Pp. 88-97.
Schill R.A. General relation for the vector magnetic field of a circular current loop: a closer look// IEEE Transactions on Magnetics. 2003, Vol. 39. No. 2, Pp. 961-967.
Влияние слабого комбинированного магнитного поля на скорость регенерации планарий Dugesia tigrina / Х. П. Тирас, Л. К. Сребницкая, Е. Н. Ильясова, А. А. Климов, В. В. Леднев // Биофизика. 1996. Т. 41, № 4. С. 826–831.