Wastewater Monitoring System of Industrial Enterprises
DOI:
https://doi.org/10.22213/2410-9304-2021-1-4-9Keywords:
emergency discharges, relationship matrix, relative description of the signal shape, optical density, spectroscopyAbstract
The paper discusses the principles of the structure of existing wastewater monitoring systems at the enterprise, including emergency situations. The analysis of the systems showed their shortcomings, where the low reliability of pollution control is distinguished. It is proposed to eliminate this drawback by using a certain number of optoelectronic sensors having radiation sources of different wavelength. This makes it possible to more accurately determine the composition of the pollutant. To solve the problem of identifying a clot of a contaminant and directing it to a certain filter, clot recognition systems are used based on its ratio of individual components. To do this, a matrix of the ratio of order to components in the form of a lattice function is used. In this case, it is proposed to use a homomorphic standard of the relation matrix, for example, in the form of diagonals.
In process of control, signals from sensors proportional to values of optical density of controlled medium are processed and converted in the form of a lattice function, which reflects amplitude values of optical density of controlled medium at different frequencies of radiation. Next, the current ratio matrix is formed from the values of the lattice function. The values of this ratio matrix are supplied to a recognition unit in which the values of the current ratio matrix are compared with the values of the reference ratio matrices stored in the reference unit. If, as a result of the comparison, the elements of the current matrix coincide with elements of any reference matrix or elements of several matrices, in the gate control unit, control signals are generated for closing the gate valve on the main pipeline and opening one or more gate valves on the branches; this allows to divert currently flowing waste water with detected contamination composition to appropriate filters for elimination of detected contamination components. If the comparison does not match the elements of the current matrix with the elements of the reference matrices, the water medium is sent to the common filter after opening the damper.References
Александровская Л. Н., Розенталь О. М. Риск-ориентированный контроль содержания в воде загрязняющих веществ // Аналитика и контроль. 2016. Т. 20. № 1. С. 6–14.
Комплекс контроля изменений оптической плотности сточных вод / В. А. Алексеев, В. П. Усольцев, С. И. Юран, Д. Н. Шульмин // Приборы и методы измерений. 2018. № 9 (1). С. 7–16. DOI: 10.21122/2220-9506-2018-9-1-7-16.
Skouteris G., Webb D. Patrick, Shin Kei Lok Felix, Rahimifard Sh. Assessment of the capability of an optical sensor for inline realtime wastewater quality analysis in food manufacturing // Water Resources and Industry. 2018. Vol. 20. December. P. 75-81. URL: https://doi.org/10.1016/j.wri.2018.10.002.
Автоматический контроль очищенных сточных вод / И. О. Тихонова, Т. В. Гусева, Я. П. Молчанова, М. В. Бегак // Экология производства. 2018. № 4. С. 52–59.
Tomperi J., Koivuranta E., Leiviskä K. Predicting the effluent quality of an industrial wastewater treatment plant by way of optical monitoring // Journal of Water Process Engineering. 2017. Vol. 16. April. P. 283-289. DOI: 10.1016/J. JWPE.2017.02.004.
Козлов В. Л., Кугейко М. М. Прозрачномеры-газоанализаторы на двухволновом полупроводниковом лазере // Приборы и методы измерений. 2011. № 2 (3). С. 5–12.
Оптоэлектронные методы измерения и контроля технологический параметров нефти и нефтепродуктов / Н. Р. Рахимов, В. А. Жмудь, В. А. Тру-шин, И. Л. Рева, И. А. Сатволдиев // Автоматика и программная инженерия. 2015. № 2 (12). С. 85–108.
Измеритель содержания воды в нефти и нефтепродуктах на основе инфракрасных оптоэлектронных пар светодиод − фотодиод / М. В. Богданович, Д. М. Кабанов, Е. В. Лебедок, П. В. Шпак, А. Г. Рябцев, Г. И. Рябцев, М. А. Щемелев, И. А. Андреев, Е. В. Куницына, Э. В. Иванов, Ю. П. Яковлев // Журнал технической физики. 2017. Т. 87. № 2. С. 315–318. DOI: 10.21883/JTF.2017.02.44146.1791.
Bhargava R. Infrared Spectroscopic Imaging: The Next Generation // Applied Spectroscopy. 2012. Vol. 66. № 10. P. 1091–1120. https://doi.org/10.1366/12-06801.
Murphy K., Heery B., Sullivan T., Zhang D., Paludetti L., Lau K.T., Diamond D., Costa E., O׳Connor N., Regan F. A lowcost autonomous optical sensor for water quality monitoring // Talanta. 2015. Vol. 132, 520–527. URL: https://doi.org/10.1016/j.talanta. 2014.09.045.
Thomas O., Constant D. Trends in optical monitoring // Water Science & Technology. 2004. V.49 № 1. P. 1-8. URL: https://doi.org/10.2166/wst.2004.0001.
Alekseev V.A., Yuran S.I., Usoltsev V.P., Shulmin D.N. System of Laser Monitoring of Water Pollution with Application of Relative Description of Signal Shape // Devices and Methods of Measurements. 2020. № 11(2). P. 114–121. URL: https://doi: 10.21122/2220-9506-2020-11-2-114-121.