On Estimation of Maximum Errors for Inclinometric Systems with Fluxgate and Accelerometric Sensors

Authors

  • D. G. Milovzorov Ufa State Aviation Technical University, Ufa

DOI:

https://doi.org/10.22213/2410-9304-2021-1-33-40

Keywords:

inclinometric system, fluxgates, accelerometers, mathematical models, maximum errors

Abstract

The paper deals with the construction of inclinometric systems with fluxgate and accelerometric sensors; the structure of the inclinometric system and photos of two-axis accelerometer sensors block and a three-component fluxgate magnetometer are provided. A method for mathematical modeling of inclinometric systems is considered, based on the formation of vector-matrix equations and obtaining systems of scalar equations for the relationship of the measured projections of the gravitational acceleration vector and the geomagnetic flux density vector on the sensitivity axis of fluxgates and accelerometers. Basic mathematical models of inclinometric systems are presented, which allow the unambiguous determination of the sought angular parameters of the spatial orientation by the measured signals from the fluxgates and accelerometers. General analytical expressions for the measurement errors are obtained and an assessment of their maximum values is performed, which makes it possible to formulate the requirements for the accuracy of the measured signals, depending on the requirements imposed on the metrological characteristics of inclinometric systems in general. Based on the analysis of the maximum errors in determining the zenith and sighting angles, their dependence on the inclination parameter of the inclinometric system body and on the specific values of the measurement errors of information signals from accelerometers is shown. Based on the analysis of the maximum values of the azimuth determination errors, their dependence on the magnetic inclination angle and on the specific values of the measurement errors of information signals from the fluxgates is shown. The graphs of the dependences of the maximum errors values in determining the desired angles are presented.

References

Функция преобразования феррозонда с однополярным импульсным возбуждением / В. С. Безкоровайный, О. В. Тарасенко, В. В. Яковенко,

А. А. Ивженко // Вестник Луганского национального университета имени Владимира Даля. 2018. № 4 (10). С. 159–166.

Никишечкин А. П., Дубровин Л. М., Давыденко В. И. Частота напряжения запитки обмотки возбуждения феррозонда как полезный сигнал в устройствах измерения напряженности магнитного поля // Приборы и системы. Управление, контроль, диагностика. 2019. № 7. С. 8–12.

Гринев И. В., Королев А. Б., Ситников В. Н. Классификация погрешностей магнитометрических инклинометров // Каротажник. 2019. № 2 (296). С. 67–70.

Milovzorov D. G., Yasoveev V. Kh. Mathematical modeling of fluxgate magnetic gradiometers, Optoelectronics, Instrumentation and Data Processing, 2017. Vol. 53. № 4. DOI: 10.3103/S8756699017040112. Pp. 388-394.

Milovzorov D. G., Yasoveev V. Kh. Angular installation options errors correction for three-component vector-measuring transducers with accelerometer at calibration phase. 2017 2nd International Ural Conference on Measurements (UralCon), Chelyabinsk, Russia, 2017. DOI: 10.1109/URALCON.2017.8120682. Pp. 23-28.

L. Yu et al., "Error Compensation and Implementation of Embedded High-Precision Magnetometer," 2010 International Conference on Electrical and Control Engineering, Wuhan, 2010, pp. 911-914, doi: 10.1109/iCECE.2010.232.

G. Liu, Y. Geng and K. Pahlavan, "Direction Estimation Error Model of Embedded Magnetometer in Indoor Navigation Environment," in 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 2015, pp. 1842-1846, doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.334.

Z. Qi, P. Mengchun, C. Dixiang, L. Ji and L. Feilu, "Integrated Compensation Method of Three-axis Magnetometer in Geomagnetic Navigation," in Instrumentation, Measurement, Computer, Communication and Control, International Conference on, Beijing, China, 2011, pp. 929–932, doi: 10.1109/IMCCC.2011.234.

Z. Zhang, C. Xiao, K. Yin and H. Yan, "A Magnetic Field Correction Method for the Non-ideally Placed 3-Axial Magnetometer Sensor," in 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 2010, pp. 130-133, doi: 10.1109/ICMTMA.2010.208.

A. Plotkin, E. Paperno, A. Samohin and I. Sasa-da, "Compensation of Temperature-Drift Errors in Fundamental-Mode Orthogonal Fluxgates," 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, Sorrento, 2006, pp. 1201-1204, doi: 10.1109/IMTC.2006.328450.

Published

07.04.2021

How to Cite

Milovzorov Д. Г. (2021). On Estimation of Maximum Errors for Inclinometric Systems with Fluxgate and Accelerometric Sensors. Intellekt. Sist. Proizv., 19(1), 33–40. https://doi.org/10.22213/2410-9304-2021-1-33-40

Issue

Section

Articles