Application of Artificial Neural Network Group to Control Induction Soldering of Spacecraft Waveguides

Authors

  • A. V. Milov Siberian State University of Science and Technology named after M. F. Reshetnev
  • V. S. Tynchenko Siberian State University of Science and Technology named after M. F. Reshetnev
  • S. O. Kurashkin Siberian State University of Science and Technology named after M. F. Reshetnev

DOI:

https://doi.org/10.22213/2410-9304-2021-2-72-82

Keywords:

induction soldering, waveguides, intelligent technology, artificial neural networks, control

Abstract

The paper deals with the development of the intelligent technology for solving the problem of controlling the process of induction soldering of spacecraft waveguides. The solution of this problem is complicated by peculiarities, caused by the use of non-contact temperature sensors. Intelligent methods have proved themselves well in solving control tasks in conditions of uncertainty. Use of intelligent methods is well suitable both for solving problems of identification and correction of errors of measuring instruments, and for direct control of the technological process of induction soldering of spacecraft waveguides. The essence of the proposed technology consists in the application of artificial neural networks to solve the problem of controlling the induction soldering process at the following stages: assessing the quality of temperature measurements in the heating zone, obtained by pyrometric sensors, correction of measurements in case of detection of non-standard errors in measuring instruments; control of induction heating process in the absence of reliable readings of measuring instruments. The paper describes the structures of artificial neural networks that are proposed to solve the control tasks, a block diagram of the intelligent control algorithm, as well as the results of experimental studies of the effectiveness of the proposed approach. The use of the presented intelligent technology will improve the quality of control of the process of induction soldering of spacecraft waveguides.

Author Biographies

A. V. Milov, Siberian State University of Science and Technology named after M. F. Reshetnev

Post-graduate

V. S. Tynchenko, Siberian State University of Science and Technology named after M. F. Reshetnev

PhD in Engineering, Associate Professor

S. O. Kurashkin, Siberian State University of Science and Technology named after M. F. Reshetnev

Post-graduate

References

Милов А. В., Тынченко В. С., Мурыгин А. В. Влияние флюса на точность измерений в процессе индукционной пайки алюминиевых волноводных трактов // Современные технологии. Системный анализ. Моделирование. 2018. № 4 (60). С. 38-46.

Адаптивная подсистема автоматического управления производством интеллектуальных электроприводов / Д. В. Шайхутдинов, Н. И. Горбатенко, К. М. Широков, В. В. Гречихин, А. М. Ланкин // Современные проблемы науки и образования. 2015. № 1. С. 103-111.

Лютов А. Г., Рябов Ю. В., Полезин С. А. Повышение качества управления технологическими процессами производства авиационных двигателей // Известия высших учебных заведений. Авиационная техника. 2017. №. 1. С. 149-152.

Интеллектуальное управление технологическими системами в условиях цифрового производства / Ю. Г. Кабалдин, Д. А. Шатагин, М. С. Аносов, А. М. Кузьмишина // Известия высших учебных заведений. Машиностроение. 2020. №. 1 (718). С. 3-12.

Кабулова Е. Г. Интеллектуальное управление многостадийными системами металлургического производства // Моделирование, оптимизация и информационные технологии. 2019. Т. 7, № 1. С. 341-351.

Карелина Е. Б., Благовещенская М. М., Клехо Д. Ю. Использование нейросетевого регулятора для управления технологическим процессом бестарного хранения муки // Технологические процессы, машины и оборудование. 2017. № 9. С. 38-40.

Wang B., Jack H., Lei S., Theodor F. Intelligent welding system technologies: State-of-the-art review and perspectives // Journal of Manufacturing Systems. 2020. vol. 56. pp. 373-391. doi.org/10.1016/ j.jmsy.2020.06.020.

Han H., Zhu S., Qiao J., Guo. M. Data-driven intelligent monitoring system for key variables in wastewater treatment process // Chinese journal of chemical engineering. 2018. vol. 26. no. 10. pp. 2093-2101. doi.org/10.1016/j.cjche.2018.03.027.

Baidya D., Roy R. Speed control of DC motor using fuzzy-based intelligent model reference adaptive control scheme // Advances in communication, devices and networking. Springer, Singapore, 2018. pp. 729-735. doi.org/10.1007/978-981-10-7901-6_79.

Vassilyev S. N., Kelina A. Yu., Kudinov Y. I., Pashchenko F. F. Intelligent control systems // Procedia Computer Science. 2017. vol. 103. pp. 623-628. doi.org/10.1016/j.procs.2017.01.088.

Милов А. В., Тынченко В. С., Мурыгин А. В. Программное обеспечение идентификации и коррекции ненормативных погрешностей средств измерений в процессе индукционной пайки // Программные продукты и системы. 2020. Т. 33, № 3. С. 502-509.

Published

10.07.2021

How to Cite

Milov А. В., Tynchenko В. С., & Kurashkin С. О. (2021). Application of Artificial Neural Network Group to Control Induction Soldering of Spacecraft Waveguides. Intellekt. Sist. Proizv., 19(2), 72–82. https://doi.org/10.22213/2410-9304-2021-2-72-82

Issue

Section

Articles